
3D Video Games
02: Point and Vector Algebra (part 1)

2025-03-03

Marco Tarini
Unviersità degli studi di Milano 1

3D VideoGames - UniMi

Points, Vectors, Versors
(recap)

Marco Tarini

Course Plan

lec. 1: Introduction 
lec. 2: Mathematics for 3D Games 

lec. 3: Scene Graph 

lec. 4: Game 3D Physics  + 
lec. 5: Game Particle Systems 
lec. 6: Game 3D Models 
lec. 7: Game Textures 
lec. 9: Game Materials 
lec. 8: Game 3D Animations 
lec. 10: Networking for 3D Games 
lec. 11: 3D Audio for 3D Games 
lec. 12: Rendering Techniques for 3D Games 
lec. 13: Artificial Intelligence for 3D Games 

3

4

3D Video Games
02: Point and Vector Algebra (part 1)

2025-03-03

Marco Tarini
Unviersità degli studi di Milano 2

Suggested reading

Mathematics for 3D Game Progr. and C.G. (3rd ed)
Eric Lengyel

Chapters 2, 3, 4

Point, Vectors, Versors
and Spatial Transformation

They are the basic data-type of 3D Games
 In the computation, for all modules
 rendering engine
 physics engine
 AI
 3D sound
 …

 In the data structures of all 3D Assets
 Meshes, animations, etc

5

6

3D Video Games
02: Point and Vector Algebra (part 1)

2025-03-03

Marco Tarini
Unviersità degli studi di Milano 3

Point, Vectors, Versors
imagine it as…example:represents:

a small
floating dot :-D

Where a character is

The center of a sphere

A position

A location
Point

a small
arrow :-D
(length is
relevant)

The velocity of
a thrown knife

The gravity acceleration

How to reach the head of
a character from its neck

A displacement

The difference
between 2 points.

The vector that
connects them.

Vector

the same :-D
(its length is
irrelevant)

The view direction of a
character

The facing of a plane in 3D
(i.e. its “normal”)

The direction of a line,
or a ray

A rotation axis

A direction

A facing

Versor
aka unit vector
(as length = 1)

aka normal
aka direction
aka normalized

vector

Example

1 2 30

1

2

3

Coordinates
of points
and ?

7

10

3D Video Games
02: Point and Vector Algebra (part 1)

2025-03-03

Marco Tarini
Unviersità degli studi di Milano 4

Example

1 2 30

1

2

3

Coordinates
of this
vector ?

And this one?

Points, Vectors, Versors
…on a 3D floating tirangle

Examples of…
 point:

 one vertex of the triangle

 vector:
 one side of the triangle

 versor:
 the «normal» of the triangle

12

13

3D Video Games
02: Point and Vector Algebra (part 1)

2025-03-03

Marco Tarini
Unviersità degli studi di Milano 5

Examples of…
 points:

 points of contact
between finger-spinner

 vectors:
 linear velocities

of these four points

 versors:
 rotation axis

(direction of)

Points, Vectors, Versors
…in a spinner

Points, Vectors, Versors
…in this screenshot

SUN

gg

17

19

3D Video Games
02: Point and Vector Algebra (part 1)

2025-03-03

Marco Tarini
Unviersità degli studi di Milano 6

Stuff = Points + Vectors + Versors

viewDir

upVec

viewPos

Description of a camera
(its so called «extrinsic parameteres»)

Stuff = Points + Vectors + Versors

dir

pos
dir

pos

description of
a (directional) sound emitter

description of
a (directional) microphone

20

21

3D Video Games
02: Point and Vector Algebra (part 1)

2025-03-03

Marco Tarini
Unviersità degli studi di Milano 7

Stuff = Points + Vectors + Versors

dir
pos

description of a spotlight

The algebra of
points, vectors, versors (and scalars)
 make sure you understand each of operation in 3 different ways:

 intuitive / spatial: what does it do conceptually / visually in 3D

 operational: how to compute the result, starting from
(a) the coordinates of the operand(s)
(b) occasionally, also

the angle between the operands, their lengths, etc
 syntactic: how to write them down

(a) on paper (mathematical notation)
(b) in a programming language (Unity C# lib, Unreal C++ lib, GLSL…)

✎

 also, familiarize how to manipulate equations, i.e. rules such as
(a) commutativity? associativity? (of each operation)
(b) distributivity? (between pairs of operations)
(c) inverse operation? identity element? absorbing element?

22

24

3D Video Games
02: Point and Vector Algebra (part 1)

2025-03-03

Marco Tarini
Unviersità degli studi di Milano 8

Point and vector algebra
(summary 1/7)

 Difference:
point – point = vector

 Addition:
point + vector = point

Point and vector algebra
(summary 2/7)

 Linear operations for vectors
 addition (vector + vector = vector)
 product with a scalar (scaling)

(vector * scalar = vector)
 therefore: interpolation

mix(𝑣଴ , 𝑣ଵ, 𝑡) = 1 − 𝑡 𝑣଴ + 𝑡 𝑣ଵ

 therefore: opposite (flip verse)
(how to: multiply by – 1)

 therefore: difference
(vector – vector = vector)

25

26

3D Video Games
02: Point and Vector Algebra (part 1)

2025-03-03

Marco Tarini
Unviersità degli studi di Milano 9

Point and vector algebra
(summary 3/7)

 Norm (for vectors)
 aka length / magnitude /

Euclidean norm / 2-norm
 distance between points:

length of vector (a – b) = distance between a and b
 Rules: triangle inequality:

Point and vector algebra
(summary 4/7)

 Normalization
 Input: a vector. Result: a versor
 how to: scale the vector by (1.0 / length)

27

28

3D Video Games
02: Point and Vector Algebra (part 1)

2025-03-03

Marco Tarini
Unviersità degli studi di Milano 10

Point and vector algebra
(summary 5/7)

 Interpolate between pairs of <something> :
 mix(point , point , t) → point
 mix(vector , vector , t) → vector
 mix(versor , versor , t) → versor

 t is a scalar «weight»
 t = 0 → pick the first one
 t = 1 → pick the second one
 t ∈ (0,1) → get something in between, for example:
 t = 0.5 → just average the two
 t = 0.1 → use almost the first, with just a bit of the second in it
 t < 0 or t > 1 → extrapolate

 Terminology: (in libraries, game engines…)
 interpolate = mix = blend = lerp

a proper
interpolation

specifically linear

Interpolation in general - notes
 Very used in Computer Graphics (e.g., rendering, animation)
 Terminology:

 a x + b y : a linear combination of x and y
 if a+b=1 and a,b ∈[0,1] : a (linear) interpolation of x and y
 if a+b=1 but a,b ∉[0,1] : a (linear) extrapolation of x and y
 a , b : the used weights
 a + b = 1 : weights are a partition of unity

 Generalizes to > 2 objects (a x + b y + c z)
 When interpolating 2 objects, we can just give one weight t.

 The other is given by difference. a = t, b = 1-t
 The interpolation is often written in programming languages

as mix(x, y, t) (or similar ways). Rember: t=0 → pick the first

 It’s a general concept! All sorts of objects can be interpolated
 Intuition: interpolation = a mix between objects
 Let’s analyze case of Points, Vectors, Versors

29

30

3D Video Games
02: Point and Vector Algebra (part 1)

2025-03-03

Marco Tarini
Unviersità degli studi di Milano 11

How to interpolate between…

 …two vectors 𝐯଴ and 𝐯ଵ :
 1 − 𝑡 𝐯଴ + 𝑡 𝐯ଵ

 …two points 𝐩଴ and 𝐩ଵ :
𝐩଴ + 𝑡 𝐩ଵ − 𝐩଴

which you may also want to write as:
 1 − 𝑡 𝐩଴ + 𝑡 𝐩ଵ

Scaling… a point ??

Only legal
operations

with an easily
defined

geometric
meaning

(to-do: check)

Linear
interpolation

But easily
generalizes to > 2

Summing… two points ??

We usually don’t need any such operation.
But it’s equivalent, mathematically.

How to interpolate between…

 …two vectors 𝐯଴ and 𝐯ଵ :
 1 − 𝑡 𝐯଴ + 𝑡 𝐯ଵ

 …two points 𝐩଴ and 𝐩ଵ :
𝐩଴ + 𝑡 𝐩ଵ − 𝐩଴

 …two versors 𝐝଴ and 𝐝ଵ :
 1 − 𝑡 𝐝଴ + 𝑡 𝐝ଵ

then renormalize the result (it’s no longer unitary).
Or, use “spherical interpolation” (aka “slerp”)…

Linear
interpolation

But easily
generalizes to > 2

31

32

3D Video Games
02: Point and Vector Algebra (part 1)

2025-03-03

Marco Tarini
Unviersità degli studi di Milano 12

LERP vs SLERP (of versors)

Linear interpolation:

Then, renormalize:

𝐝 = lerp(𝐝଴, 𝐝ଵ, ⅔)

⅔ x ⅓ x

Spherical interpolation:

Not the same result!
 But, close enough
 Even closer when:

𝐝଴ , 𝐝ଵ similar OR t close to ½

 Is it worth the extra
computation cost?

𝐝 = slerp(𝐝଴, 𝐝ଵ, ⅔)

⅔ α ⅓α
𝐝଴ 𝐝ଵ

𝐝଴ 𝐝ଵ

𝐝଴ 𝐝ଵ

The formulas

 LERP + normalization:

 1 − 𝑡 𝐝𝟎 + 𝑡 𝐝ଵ

then re-normalize

 or SLERP:

sin 1 − 𝑡 α

sin(α)
𝐝଴ +

sin 𝑡 α

sin(α)
𝐝ଵ

aka “NLERP”

angle
between
d0 and d1

33

34

3D Video Games
02: Point and Vector Algebra (part 1)

2025-03-03

Marco Tarini
Unviersità degli studi di Milano 13

SLERP: notes

 Applicable to any versor (unit vector)
including 2D, 3D, and quaternions (see later)

 SLERP can even be used on general vectors:
 Compute magnitudes of vectors
 Compute directions of vectors

(divide by magnitude, i.e., normalize)
 new direction = SLERP of the directions (unit vectors)
 new magnitude = LERP of the magnitudes (scalars)
 multiply new dir with new mag to get the final result

Point and vector algebra
Products: additional reading

To be continued!

Products between vectors and/or versors

 Dot product (or inner product)
 Output: a scalar

 Cross product (or vector product)
 Output: a vector

Section 2.2

Section 2.3

NEXT
LECTURE!

35

36

