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3D VideoGames - UniMi

Points, Vectors, Versors
(recap)

Marco Tarini

Course Plan 

lec.  1: Introduction  
lec.  2: Mathematics for 3D Games 

lec.  3: Scene Graph 

lec.  4: Game 3D Physics  + 
lec.  5: Game Particle Systems 
lec.  6: Game 3D Models 
lec.  7: Game Textures 
lec.  9: Game Materials 
lec.  8: Game 3D Animations 
lec. 10:  Networking for 3D Games 
lec. 11: 3D Audio for 3D Games 
lec. 12: Rendering Techniques for 3D Games 
lec. 13: Artificial Intelligence for 3D Games 

3

4



3D Video Games                                
02: Point and Vector Algebra (part 1)

2025-03-03

Marco Tarini                             
Unviersità degli studi di Milano 2

Suggested reading

Mathematics for 3D Game Progr. and C.G. (3rd ed)
Eric Lengyel

Chapters 2, 3, 4

Point, Vectors, Versors
and Spatial Transformation

They are the basic data-type of 3D Games 
 In the computation, for all modules
 rendering engine
 physics engine
 AI
 3D sound
 …

 In the data structures of all 3D Assets
 Meshes, animations, etc
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Point, Vectors, Versors
imagine it as…example:represents:

a small
floating dot :-D

Where a character is

The center of a sphere

A position

A location
Point

a small 
arrow :-D
(length is 
relevant)

The velocity of 
a thrown knife

The gravity acceleration

How to reach the head of 
a character from its neck

A displacement

The difference 
between 2 points.

The vector that
connects them.

Vector

the same :-D
(its length is
irrelevant)

The view direction of a 
character

The facing of a plane in 3D
(i.e. its “normal”)

The direction of a line,
or a ray

A rotation axis

A direction

A facing

Versor
aka unit vector
(as length = 1)

aka normal
aka direction
aka normalized    

vector

Example

1 2 30

1

2

3

Coordinates
of points 
and ?
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Example

1 2 30

1

2

3

Coordinates
of this 
vector ?

And this one?

Points, Vectors, Versors
…on a 3D floating tirangle

Examples of…
 point:

 one vertex of the triangle

 vector:
 one side of the triangle

 versor:
 the «normal» of the triangle
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Examples of…
 points:

 points of contact
between finger-spinner

 vectors:
 linear velocities

of these four points

 versors:
 rotation axis

(direction of)

Points, Vectors, Versors
…in a spinner

Points, Vectors, Versors
…in this screenshot

SUN

gg
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Stuff = Points + Vectors + Versors

viewDir

upVec

viewPos

Description of a camera 
(its so called «extrinsic parameteres»)

Stuff = Points + Vectors + Versors

dir

pos
dir

pos

description of
a (directional) sound emitter

description of
a (directional) microphone
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Stuff = Points + Vectors + Versors

dir
pos

description of a spotlight

The algebra of 
points, vectors, versors (and scalars)
 make sure you understand each of operation in 3 different ways:

 intuitive / spatial: what does it do conceptually / visually in 3D

 operational: how to compute the result, starting from
(a) the coordinates of the operand(s)
(b) occasionally, also 

the angle between the operands, their lengths, etc
 syntactic: how to write them down

(a) on paper (mathematical notation)
(b) in a programming language (Unity C# lib, Unreal C++ lib, GLSL…)

✎

 also, familiarize how to manipulate equations, i.e. rules such as
(a) commutativity? associativity? (of each operation)
(b) distributivity? (between pairs of operations)
(c) inverse operation? identity element? absorbing element?
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Point and vector algebra
(summary 1/7)

 Difference:
point – point = vector

 Addition: 
point + vector = point

Point and vector algebra
(summary 2/7)

 Linear operations for vectors
 addition (vector + vector = vector)
 product with a scalar (scaling)

(vector * scalar =  vector)
 therefore: interpolation

mix( 𝑣଴  , 𝑣ଵ, 𝑡) = 1 − 𝑡  𝑣଴ + 𝑡 𝑣ଵ

 therefore: opposite (flip verse)
(how to: multiply by – 1 )  

 therefore: difference
(vector – vector = vector)
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Point and vector algebra 
(summary 3/7)

 Norm (for vectors)
 aka length / magnitude / 

Euclidean norm / 2-norm
 distance between points: 

length of vector (a – b) = distance between a and b
 Rules: triangle inequality:

Point and vector algebra 
(summary 4/7)

 Normalization
 Input: a vector. Result: a versor
 how to: scale the vector by  (1.0 / length)
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Point and vector algebra
(summary 5/7)

 Interpolate between pairs of <something> :
 mix(  point  ,  point  , t ) → point
 mix( vector , vector , t ) → vector
 mix( versor , versor , t ) → versor

 t is a scalar «weight»
 t = 0 → pick the first one
 t = 1 → pick the second one
 t ∈ (0,1) → get something in between, for example:
 t = 0.5 → just average the two
 t = 0.1 → use almost the first, with just a bit of the second in it
 t < 0  or  t > 1  → extrapolate

 Terminology: (in libraries, game engines…)
 interpolate = mix = blend = lerp

a proper
interpolation

specifically linear

Interpolation in general - notes
 Very used in Computer Graphics (e.g., rendering, animation)
 Terminology:

 a x + b y :  a linear combination of x and y
 if  a+b=1      and    a,b ∈[0,1] :  a (linear) interpolation of x and y
 if  a+b=1      but     a,b ∉[0,1] :  a (linear) extrapolation of x and y
 a , b :  the used weights
 a + b = 1 :  weights are a partition of unity

 Generalizes to > 2 objects  (a x + b y + c z )
 When interpolating 2 objects, we can just give one weight t.

 The other is given by difference.  a = t,  b = 1-t
 The interpolation is often written in programming languages 

as   mix( x, y, t ) (or similar ways). Rember: t=0 → pick the first

 It’s a general concept! All sorts of objects can be interpolated 
 Intuition: interpolation = a mix between objects
 Let’s analyze case of Points, Vectors, Versors
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How to interpolate between…

 …two vectors 𝐯଴ and  𝐯ଵ :
 1 −  𝑡  𝐯଴  +   𝑡  𝐯ଵ

 …two points 𝐩଴ and  𝐩ଵ :
𝐩଴  + 𝑡 𝐩ଵ − 𝐩଴

which you may also want to write as:
 1 −  𝑡  𝐩଴  +  𝑡  𝐩ଵ

Scaling… a point ??

Only legal 
operations

with an easily 
defined

geometric 
meaning

(to-do: check)

Linear
interpolation

But easily 
generalizes to > 2

Summing… two points ??

We usually don’t need any such operation.
But it’s equivalent, mathematically.

How to interpolate between…

 …two vectors 𝐯଴ and  𝐯ଵ :
 1 −  𝑡  𝐯଴  +   𝑡  𝐯ଵ

 …two points 𝐩଴ and  𝐩ଵ :
𝐩଴  + 𝑡 𝐩ଵ − 𝐩଴

 …two versors 𝐝଴ and  𝐝ଵ :
 1 −  𝑡  𝐝଴  +   𝑡  𝐝ଵ

then renormalize the result (it’s no longer unitary).
Or, use “spherical interpolation” (aka “slerp”)… 

Linear
interpolation

But easily 
generalizes to > 2
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LERP vs SLERP (of versors)

Linear interpolation:

Then, renormalize:

𝐝 = lerp(𝐝଴, 𝐝ଵ, ⅔)

⅔ x ⅓ x

Spherical interpolation:

Not the same result!
 But, close enough
 Even closer when:

𝐝଴ , 𝐝ଵ similar OR t close to ½ 

 Is it worth the extra
computation cost? 

𝐝 = slerp(𝐝଴, 𝐝ଵ, ⅔)

⅔ α ⅓α
𝐝଴ 𝐝ଵ

𝐝଴ 𝐝ଵ

𝐝଴ 𝐝ଵ

The formulas

 LERP + normalization:

 1 −  𝑡  𝐝𝟎  + 𝑡  𝐝ଵ

then re-normalize

 or SLERP:

sin  1 −  𝑡  α

sin(α)
𝐝଴  + 

sin  𝑡 α

sin(α)
𝐝ଵ

aka “NLERP”

angle 
between
d0 and d1
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SLERP: notes

 Applicable to any versor (unit vector)
including 2D, 3D, and quaternions (see later)

 SLERP can even be used on general vectors:
 Compute magnitudes of vectors
 Compute directions of vectors 

(divide by magnitude, i.e., normalize)
 new direction = SLERP of the directions (unit vectors)
 new magnitude = LERP of the magnitudes (scalars)
 multiply new dir with new mag to get the final result

Point and vector algebra
Products: additional reading

To be continued!

Products between vectors and/or versors

 Dot product (or inner product)
 Output: a scalar

 Cross product (or vector product)
 Output: a vector

Section 2.2

Section 2.3

NEXT 
LECTURE!
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