
3D Video Games
03: 3D Rotations. Part 3

2025-03-20

Marco Tarini
Unviersità degli studi di Milano 1

Course Plan

lec. 1: Introduction 
lec. 2: Mathematics for 3D Games 
lec. 3: Scene Graph 

lec. 4: Game 3D Physics  + 
lec. 5: Game Particle Systems 
lec. 6: Game 3D Models 
lec. 7: Game Textures 
lec. 9: Game Materials 
lec. 8: Game 3D Animations 
lec. 10: Networking for 3D Games 
lec. 11: 3D Audio for 3D Games 
lec. 12: Rendering Techniques for 3D Games 
lec. 13: Artificial Intelligence for 3D Games 

Rotation composition?
Quaternion multiplication!

p , q଴ , qଵ ∈ ℍ
q଴ , qଵ represent rotations
p represents a point

 r̅ ⋅ sത = s ⋅ r
(rules of quaternions)

(remember: product is not
commutative)

product is associative
(like for complex numbers)

p rotated by q1

p rotated by q1, then rotated by q0

q଴ ⋅ (qଵ⋅ p ⋅ qതଵ) ⋅ qത଴

=

(q଴ ⋅ qଵ) ⋅ p ⋅ (qതଵ⋅ qത଴)

=
(q଴ ⋅ qଵ) ⋅ p ⋅ (q଴ ⋅ qଵ)

58

59

3D Video Games
03: 3D Rotations. Part 3

2025-03-20

Marco Tarini
Unviersità degli studi di Milano 2

Rotation inversion?
Quaternion conjugation! Proof:

q , p ∈ ℍ
q represents a rotation
p represents a point

 qത ⋅ q = q ଶ = 1

product
is associative

(like for
complex numbers)

p rotated by q

p rotated by q, then rotated by qത

qത ⋅ q ⋅ p ⋅ qത ⋅ qതത

=
qത ⋅ q ⋅ p ⋅ qത ⋅ q

=
pbecause q

is unitary

qିଵ =
qത

q ଶ
= qത

Just like with
compex numbers:

that is:

Quaternions:
geometric interpretation (complete)

 A quaternion q = (v , 𝑑) represents :
 the 3D point / vector / versor v , when 𝑑 = 0

 a 3D rotation, when q is unit, i.e. q ଶ = v ଶ + 𝑑ଶ = 1
 neither, otherwise

 If q is a rotation and p is a point (q, p ∈ ℍ) then…
 q ⋅ p ⋅ qത is the rotated point / vector
 qത is the inverse rotation

 (so, qത ⋅ p ⋅ q is point p rotated… in the other direction)
 q଴ ⋅ qଵ is the composited rotation (first qଵ then q଴)

60

61

3D Video Games
03: 3D Rotations. Part 3

2025-03-20

Marco Tarini
Unviersità degli studi di Milano 3

3D Rotations as Quaternions

 quaternion q representing the 3D rotation
of angle α around axis aො :

 q = sin
஑

ଶ
aො , cos

஑

ଶ

that is

 q = sin
஑

ଶ
aො௫𝑖 + sin

஑

ଶ
aො௬𝑗 + sin

஑

ଶ
aො௭𝑘 + cos

஑

ଶ

 Observe that q ଶ = 1

verify

Exercise: are the following
quaternions unitary?

 𝐪଴ = (0,0, −1,0) = −𝑗

 𝐪ଵ =
ଵ

ଶ
,

ଵ

ଶ
,

ଵ

ଶ
,

ଵ

ଶ
= 0.5𝑖 + 0.5𝑗 + 0.5𝑘 + 0.5

 𝐪ଶ = 1,1,1,1 = 𝑖 + 𝑗 + 𝑘 + 1

62

63

3D Video Games
03: 3D Rotations. Part 3

2025-03-20

Marco Tarini
Unviersità degli studi di Milano 4

Example: turnabout rotation
(italian: un «dietrofront»)

 Find the quaternion 𝐫 representing the rotation
by 180° (𝜋 radiants) around axis Y
 aො = 0,1,0

 α = 𝜋 , sin
஑

ଶ
= 1, cos

஑

ଶ
= 0

 𝐫 = 1 aො , 0 = 0𝑖 + 1𝑗 + 0𝑘 + 0 = 𝑗

 Find the quaternion 𝐪 representing point
2
3
4

:

 𝐪 = 2𝑖 + 3𝑗 + 4𝑘

 Rotate that point with that rotation:
 𝐪ᇱ = 𝐫 𝐪 𝐫̅ = 𝑗 2𝑖 + 3𝑗 + 4𝑘 −𝑗 = …

imaginary vector real scalar

(finish me!)

3D Rotations as Quaternions:
equivalent representations

 Around axis aො by angle α :

q = sin
α

2
aො , cos

α

2

 Around axis −aො by angle (−α) (it’s the same rotation!) :

qᇱ = −sin
ି஑

ଶ
aො , cos

ି஑

ଶ
= q

Nice! But:
 Around axis aො by angle (α + 2𝜋) (again, it’s the same rotation!) :

qᇱᇱ = sin
஑

ଶ
+ 𝜋 aො , cos

஑

ଶ
+ 𝜋 =

= −sin
஑

ଶ
aො , −cos

஑

ଶ
= −q

 Conclusion:
quaternion q and quaternion −q encode the same rotation

the same quaternion :-)

a different quaternion :-(

360°

180°

65

66

3D Video Games
03: 3D Rotations. Part 3

2025-03-20

Marco Tarini
Unviersità degli studi di Milano 5

3D Rotations as Quaternions:
equivalent representations 

Given a quaternion q representing a rotation:
 Flip its imaginary part (getting qത): invert rotation
 Flip its real part (getting −qത): invert rotation
 Flip everything (getting −q): same rotation

Every single rotation is encoded
by two different quaternions: q and −q.
(the inverse rotation is also encoded
by two different quaternions: qത and −qത)

Interpolating two quaternions
(that represent two rotations)

Works well, but two caveats:
 Take the “shortest path” (as usual):

flip 2nd quaternion first, if this makes them closer
 Distance defined as dot product in 4D

(consider quaternions as 4D unit vectors for this)
(remember: dot product between unitary vectors is a
measure of similarity!)

 Loss of normality
 Needs re-normalization (NLERP),
 Or SLERP

(again, just consider quaternions as 4D unit vectors)

67

68

3D Video Games
03: 3D Rotations. Part 3

2025-03-20

Marco Tarini
Unviersità degli studi di Milano 6

Shortest path interpolation:
the case of quaternions

 Let 𝐩 and 𝐪 be two rotations
 𝐪 and −𝐪 represent the same rotation.
 Which one to choose?

 Which one is closer to 𝐩 ?
 Distance between 𝐩 and 𝐪 = dot(𝐩 , 𝐪)

 Distance between 𝐩 and −𝐪 = dot(𝐩 , −𝐪) = −dot(𝐩 , 𝐪)

 Conclusion:
 If dot(𝐩 , 𝐪) is positive, interpolate with 𝐪
 Otherwise, interpolate with −𝐪

Quaternions, exercise:
Experiment with cumulation rotations

1. Take the quaternion q0 that encodes the 180°
rotation around the Y axis (see exercises above)

2. Take the quaternion q1 that encodes the 180°
rotation around the X axis (see exercises above)

3. Compute the quaternion q2 that does the two
rotations in succession, in that order
(using q0 and q1)

4. Which rotation is encoded by q2? Verify with a real
3D object (e.g. a cellphone) that q2 encoded the
status that is reached if you rotate by q0 and then
by q1

69

70

3D Video Games
03: 3D Rotations. Part 3

2025-03-20

Marco Tarini
Unviersità degli studi di Milano 7

Quaternions, exercise:
Experiment with interpolating rotations

1. Take (again) the quaternion q0 that encodes the
180° rotation around the Y axis

2. Take the quaternion q1 that encodes identity
rotation (or, rather, one quaternion that encodes it)

3. Compute the quaternion q2 that interpolates the
two quaternions q0 and q1
 (what happens with the shortest path?

why do you think that happens?)

4. Which rotation is encoded by q2? To help with the
answer, the sin and cos for PI/4 radiants (45°) is…

d+
c
k

+
b
j

+
a
i

×

+
i

de
+

-j
ce

+
k

be
+

-1
ae

e i

+

+
j

df
+

i
cf

+
-1
bf

+
-k
af

f j

+

+
k
gf

+
-1
cg

+
-i
bg

+
j

ag
g k

+

hd+
k

ch
+

j
bh

+
i

ah
h

Quaternion Product

71

73

3D Video Games
03: 3D Rotations. Part 3

2025-03-20

Marco Tarini
Unviersità degli studi di Milano 8

d+
c
k

+
b
j

+
a
i

x

+
i

de
+

-j
ce

+
k

be
+

-1
ae

e i

+

+
j

df
+

i
cf

+
-1
bf

+
-k
af

f j

+

+
k

dg
+

-1
cg

+
-i
bg

+
j

ag
g k

+

hd+
k

ch
+

j
bh

+
i

ah
h

d+
c
k

+
b
j

+
a
i

×

+
i

de
+

-j
ce

+
k

be
+

-1
ae

e i

+

+
j

df
+

i
cf

+
-1
bf

+
-k
af

f j

+

+
k

dg
+

-1
cg

+
-i
bg

+
j

ag
g k

+

hd+
k

ch
+

j
bh

+
i

ah
h

Quaternion Product

(w , h)
.

(v , d)
=

(w d + v h + w×v
,

h d – v∙w)

some vector

v

w

some scalar

d+
c
k

+
b
j

+
a
i

x

+
i

de
+

-j
ce

+
k

be
+

-1
ae

e i

+

+
j

df
+

i
cf

+
-1
bf

+
-k
af

f j

+

+
k

dg
+

-1
cg

+
-i
bg

+
j

ag
g k

+

hd+
k

ch
+

j
bh

+
i

ah
h

Quaternion Product

(w , h)
.

(v , d)
=

(w d + v h + w×v
,

h d – w∙v)

v

w

d+
c
k

+
b
j

+
a
i

×

+
i

de
+

-j
ce

+
k

be
+

-1
ae

e i

+

+
j

df
+

i
cf

+
-1
bf

+
-k
af

f j

+

+
k

dg
+

-1
cg

+
-i
bg

+
j

ag
g k

+

hd+
k

ch
+

j
bh

+
i

ah
h

74

76

3D Video Games
03: 3D Rotations. Part 3

2025-03-20

Marco Tarini
Unviersità degli studi di Milano 9

Quaternion multiplication: notes

 The previous slide shows how to compactly write
(and compute! and code!) a product between two quaternions
that are expressed as pairs
(imaginary-vector , real-scalar)

 Quaternion multiplication is the basic operation,
used (twice) to apply a rotation to a point/vector/versor,
and (once) to cumulate two quaternions

 For example (next slide): let’s use this in the formula to rotate
to a point/vector/versor with quaternions
 and let’s see what simplifies

 Note: do not confuse the quaternion product
with the dot product of two quaternions seen as 4D vectors

Applying rotations (as quaternions)

w , 𝑎 v, 0 −w , 𝑎 =

quaternion
representing

3D point or vector v

quaternion
representing

a rotation

conjugate
of

w , 𝑎

= w , 𝑎 𝑎v − v × w, v ȉ w =

=
𝑎 w × v − w × v × w + v ȉ w w + 𝑎ଶ v − 𝑎 v × w ,

𝑎v ȉ w − 𝑎v ȉ w + w ȉ (v × w)
=

= 𝑎ଶ v + 2𝑎 w × v + w ȉ v w − w × v × w , 0

why?

of course

77

78

3D Video Games
03: 3D Rotations. Part 3

2025-03-20

Marco Tarini
Unviersità degli studi di Milano 10

Exercise: quaternion norm
as a quaternion product
 As you may remember,

given a complex number 𝐜 ∈ ℂ, 𝐜 = 𝑎 + 𝑖𝑏

its magnitude 𝐜 = 𝑎ଶ + 𝑏ଶ

can be expressed as
𝐜 ଶ = 𝐜 𝐜̅

 Does the same hold for quaternions?
Given 𝐪 ∈ ℍ ∶

𝐪 ଶ = 𝐪 𝐪ഥ

 Verify, using the multiplication formula we learnt

Quaternions as rotations: summary

 Compact to store (4 scalars, almost the minimum)
 Trivial to invert (just conjugate)
 Fast to composite (just multiply: 2nd ∗ 1st)
 Fast to apply (multiply twice, with natural and conjugated)

 Easy to enforce that it stays a rotation (just renormalize)
 Even after long sequences of cumulations, unlike matrices

 Behaves well under interpolation
 Just use NLERP – even better with SLERP
 Remember to take the shortest path (=> flip sign if necessary)

 The favorite representation in 3D games
 but, other solutions still useful in one context or another

79

80

3D Video Games
03: 3D Rotations. Part 3

2025-03-20

Marco Tarini
Unviersità degli studi di Milano 11

Recap: representing rotations
1/2 Euler Angles3x3 Matrix

★★★★★★☆☆☆☆Space efficient?
(in RAM, GPU, storage…)

★★☆☆☆★★★★☆Apply
(to points/vectors)

★☆☆☆☆★★★★★Invert
(produce inverse)

★☆☆☆☆★★☆☆☆Composite
(with another rotation)

★☆☆☆☆★☆☆☆☆Interpolate
(with another rotation)

★★★★★★★★☆☆Intuitive?
(e.g. to manually set)

Free extra shear + scale.
Useful to extract local axes.Notes…

easy to do, unintuitive result
(shortest-path required!)

requires trigonometry
sin/cos

9 products
(3 dot products)

just
transpose

9 scalars 3 scalars
(even as small int!)

roll
yaw
pitch

Matrix multipl
(9 dots)
Numerical errors

GIMBAL
LOCK

E
 f

 f
ic

 i
e

 n
 t

 /
 e

 a
 s

 y

t

o

Introduces
shear/scale

Recap: representing rotations
2/2 (unitary) quaternionaxis , angle

★★★★☆★★★★☆Space efficient?
(in RAM, GPU, storage…)

★★★★★★★★☆☆Apply
(to points/vectors)

★★★★★★★★★★Invert
(produce inverse)

★★★★★★☆☆☆☆Composite
(with another rotation)

★★★★★★★★★☆Interpolate
(with another rotation)

★☆☆☆☆★☆☆☆☆Intuitive?
(e.g. to manually set)

two representations for each rotation
(flip all no effect) (for different reasons)

Require shortest path!
Notes…

no

Requires
trigonometry

4 scalars (or 3)
(precision needed)

E
 f

 f
ic

 i
e

 n
 t

 /
 e

 a
 s

 y

t

o

no

super easy
flip imaginary or real part

super easy:
1 quat product

Just 2 quat
product

Just flip
axis OR angle

easy + good result
(NLERP or SLERP)

4 scalars
(precision needed)

81

82

3D Video Games
03: 3D Rotations. Part 3

2025-03-20

Marco Tarini
Unviersità degli studi di Milano 12

Switching between representations

3×3
MATRIX

EULER
ANGLES

QUATERNION
rather trivial
(an easy exercise)

interesting
exercise
(try it!)

AXIS
&

ANGLE

What defines a rotation, for you?

« Roll, pitch, and yaw! »
then you are… a pilot, or an astronaut

« X-angle, Y-angle, and Z-angle! »
then you are… a digital artist (like an animator, or a scener)

« An angle! »
then you are… a flatland citizen

« A vector! the dir is the axis the magnitude the angle »
then you are… a physicist

« A 3x3 matrix! the submatrix of a 4x4 transform »
then you are… a computer graphicist, or a Graphics API

« A quaternion! »
then you are… a game developer

85

86

3D Video Games
03: 3D Rotations. Part 3

2025-03-20

Marco Tarini
Unviersità degli studi di Milano 13

Master Game Dev

Transformations in games:
notes about game engines

Marco Tarini

Notes on transformation in Unity
What you see in the GUI

aka YAW
(so, goes 3rd)

note: exposed as degrees, not radians
--> even more intuitive

aka PITCH
(so, goes 2nd)

aka ROLL
(so, goes 1st)

Rotations as Euler angles
 the intuitive choice! (perfect for a GUI)

87

88

3D Video Games
03: 3D Rotations. Part 3

2025-03-20

Marco Tarini
Unviersità degli studi di Milano 14

Notes on rotations in Unity
internally
Rotations as Quaternion (a class)
 can be initialized (via constructors) as a …

quaternion, euler angles, axis+angle, or matrix
 can be converted to / accessed as… any of the above

(thanks to methods, or to “properties” -
basically setter/getter methods in disguise+
that gives the illusion for a “quaternion” to be whichever type you
think it is

 Support for cumulation (multiplication),
inversion (conjugation), interpolation (SLERP) …

 Support for all the common problems
(from-to rotation, etc)

Notes on Rotations in Unreal

Class FQuat :
 convert from:
 axis+angle, matrix4x4, Rotator, euler (vec3) (by constructors)
 Euler angles (makeFromEuler method)
 From-to vector pairs (FindBetween method)

 convert to:
 ToAxisAndAngle, Euler, Rotator,
 matrix columns GetAxis(X|Y|Z)
 also, with names: Get(Forward|Right|Up)Vector,

 methods: invert with Inverse,
blend with FastSlerp
or FastSlerpFullPath (no shortest path)
apply with RotateVector / UnrotateVector
composite with operator *

Class FRotator
for “nautical” Euler angles:
fields: Pitch Roll Yaw

fields: W X Y Z

89

90

3D Video Games
03: 3D Rotations. Part 3

2025-03-20

Marco Tarini
Unviersità degli studi di Milano 15

Notes on Rotations in Godot
(C# game engine)
Class Basis
 a rotation as a 3x3 matix
 Its x,y,z fields (of type Vector3) are the columns

(that is, the x,y,z axis of local space define in global space)
 Warning: doesn’t have to be orthonormal.

For example, can include scale
 Has a method to enforce back orthonormality

Class Quaternion
 a rotation as a quaternion
 Includes method for SLERP-ing

The two classes can be converted to/from each other (via constructors)
Both include methods for cumulation (multiplication), application, inversion.
Both include methods for conversion to/from axis-angle.
Euler angles: no explicit support (but naturally you can go from 3 Euler angles to
either class by multiplying rotations around x, y, z axis, but no built-in order)

Notes on rotations in OpenGL
(Computer Graphics Library)

 In the «old school» API:
(and now in many similar libraries)
 API: glRotate3f

 takes: angle & axis

 Internally:
 matrices
 jointly as with any other spatial transform
 separated in MODEL+VIEW+PROJECT transforms

91

92

3D Video Games
03: 3D Rotations. Part 3

2025-03-20

Marco Tarini
Unviersità degli studi di Milano 16

GUI: how do artists author
3D rotations?

 Typical way: rotation gizmo
 (also: «arcball» or «trackball»)
 3 handles to control the three Euler angles
 or “free”, drag-n-drop mode (trackball metaphor)

convention: Red = X Green = Y Blue = Z

scale gizmo
 3 handles for anisotropic scalings

1 handle (middle) for uniform scalings

GUI: how do artists author 3D translations?
translation gizmo

 handles to traslate along axes or planes

GUI: how to author 3D scalings?

convention:
Red = X

Green = Y
Blue = Z

93

96

