
3D Video Games
05: Game Physics - Dynamics 2

2025-03-31

Marco Tarini
Università degli studi di Milano 1

Course Plan

lec. 1: Introduction 
lec. 2: Mathematics for 3D Games 
lec. 3: Scene Graph 

lec. 4: Game 3D Physics  + 
lec. 5: Game Particle Systems 
lec. 6: Game 3D Models 
lec. 7: Game Textures 
lec. 9: Game Materials 
lec. 8: Game 3D Animations 
lec. 10: 3D Audio for 3D Games 
lec. 11: Networking for 3D Games 
lec. 12: Artificial Intelligence for 3D Games 
lec. 13: Rendering Techniques for 3D Games 

Forces (continued): control forces

 Example: the player pressing the forward button
⇒ a forward force is applied to their avatar
 no physical justification
 “Don’t ask questions, physics engine”

 According to many:
it’s better when that’s not done too much
 the more physically justified the forces, the better
 for example: does the car accelerate…

because a torque is applied to its two traction wheels VS
because a force is applied to its body

 van be harder to control
 see also: gameplay VS cosmetics, control VS realism,

emerging behaviors

90

91

3D Video Games
05: Game Physics - Dynamics 2

2025-03-31

Marco Tarini
Università degli studi di Milano 2

Forces

one
step

a ← f⃗ /𝑚

𝐩 ← 𝐩 + v ⋅ 𝑑𝑡

v ← v + a ⋅ 𝑑𝑡

 Remember all forces acting on a particle add up!
(vector summatory)

 The resulting force is what counts

dttt 

Example of forces: electric forces

 Given two charged particles in 𝐩௔ and 𝐩௕

with positive or negative charges 𝑞௔ and 𝑞௕

+

- 𝐩𝒃

𝐩𝒂

𝑓௔ =
−𝐾 𝑞௔ 𝑞௕

𝐩௕ − 𝐩௔
ଶ

𝐩௕ − 𝐩௔

𝐩௕ − 𝐩௔

force
magnitude

(scalar)
positive or
negative

force
direction
(versor)

=
−𝐾 𝑞௔ 𝑞௕

𝐩௕ − 𝐩௔
ଷ 𝐩௕ − 𝐩௔

some global constant

93

94

3D Video Games
05: Game Physics - Dynamics 2

2025-03-31

Marco Tarini
Università degli studi di Milano 3

Example of forces: wind pressure

 Wind is a force acting on surfaces
 The larger the exposed surface to the wind,

the STRONGER / MORE INTENSE the force
 The more orthogonal the surface to the wind direction,

the larger the force
 The stronger the wind pressure 𝑤 (a vector), the larger the force

𝑤

𝐩𝟎

𝐩𝟏

𝐩𝟐

𝑓 =
𝟏

𝟐
(𝐩𝟏 − 𝐩𝟎) × (𝐩𝟐−𝐩𝟎) ȉ 𝑤

𝑤

𝑤

area vector

force magnitude
(scalar)

force
direction
(versor)

(apply 1/3 of 𝑓 on each particle)

Example of forces: buoyancy

 Opposite of gravity force 𝑓
 of the submerged part... if it was made of water
 mass of the submerged part = its volume times density of water

𝑓

mass/volume
aka “specific mass”

or whichever liquid

95

96

3D Video Games
05: Game Physics - Dynamics 2

2025-03-31

Marco Tarini
Università degli studi di Milano 4

Attrition (or friction) forces

 Isotropic friction forces :
 a force that opposes any motion, regardless of its direction
 direction: always opposite of current velocity direction
 magnitude: proportional to the speed

(= magnitude of velocity vector)
 note: this force depends on velocity, not positions.
 models the effect of the medium where the motion happens

(air, water, thin space…)
 the denser the medium, the stronger the force

(water >> air >> thin space)

 Planar friction forces:
 A force that happens when things slide against each other
 Always parallel to the contact plane (orthogonal to the normal)
 Part of the collision response (see next topic!)

Attrition (or friction) forces:
simulate them with velocity damping !

 A useful trick to simulate isotropic friction:
“velocity damping”
 simply reduce all velocity vectors by a fixed proportion
 for example: scale velocity down by 2% per second

(“drag factor” = 0.02 / sec)
(that is, scale velocity vectors by a factor 0.98)

 Why it makes sense:
Higher speed = more attrition = more loss of speed.
So, attrition = a “fixed tax” (in %) on velocity.

 For planar friction:
 Split velocity into parallel / orthogonal parts
 Apply different Drag factors to each parts

97

98

3D Video Games
05: Game Physics - Dynamics 2

2025-03-31

Marco Tarini
Università degli studi di Milano 5

Velocity Damping: how to
(as an example)

 Objective: “reduce speed by 1.5% every second”
 So:

 After a second: 𝑣⃗ ← 1.0 − 0.015 𝑣⃗

 After 2 seconds? 𝑣⃗ ← 1.0 − 0.015 ଶ 𝑣⃗

 After 𝑘 seconds? 𝑣⃗ ← 1.0 − 0.015 ௞ 𝑣⃗

 After 𝑑𝑡 seconds? 𝑣⃗ ← 1.0 − 0.015 ௗ௧ 𝑣⃗

 Which can be approximated with 𝑣⃗ ← 1.0 − 0.015 ȉ 𝑑𝑡 𝑣⃗

 The approximation is good when this is small

Drag factor: 0.015

e.g. 1/60 = 0.17 sec

Velocity Damping:
pseudo-code
Vec3 position = …
Vec3 velocity = …

void initState(){
position = …
velocity = …

}

void physicStep(float dt)
{

Vec3 acceleration = force(positions) / mass;
position += velocity * dt;
velocity += acceleration * dt;

}

void main(){
initState();
while (1) do physicStep(1.0 / FPS);

}

velocity *= (1.0 – DRAG * dt);

99

100

3D Video Games
05: Game Physics - Dynamics 2

2025-03-31

Marco Tarini
Università degli studi di Milano 6

Velocity Damping: notes
 Velocity Damping is useful for robustness

 Prevents the energy to ever increase

 Limitations:
 it may exaggerate frictions of, e.g., air,

especially in absence of contacts
 it’s a crude approximation:

attrition forces are not really linear with speed

 In practice:
 low drag: hardly noticeable (in the short run), increases robustness
 high drag (e.g. 2% per sec): everything feels like to be moving in

molasses (ita: melassa); everything quickly grinds to a halt
 super high drag: (e.g. >25% per sec) basically, no inertia anymore.

May be useful to converge to (local) minimal energy states:
your simulator is basically a solver for statics, not dynamics

Continuity of pos and vel

 In real Newtonian physics the state
(pos and vel) can only change continuously
 No sudden jump!

 In practice, sometimes is useful to artificially break
continuity in the simulations

 Discontinuous changes:
 for positions: “teleports”
 for velocity: “impulses”
 In the real world, those variations can well be

consequences of forces, but these forces are not modelled
as such, in our system

101

102

3D Video Games
05: Game Physics - Dynamics 2

2025-03-31

Marco Tarini
Università degli studi di Milano 7

Dynamics displacements
VS kinematic

aka dynamic
displacements

Justified
by physics

. . .
p = p + v ⋅ 𝑑𝑡
. . .

aka Kinematic
displacements

Just
“teleportation”

. . .
p = p + 𝑑p
. . .

a discontinuous
change of state (position)

Impulses VS Forces

 Forces (continuous)
 Continuous application
 every frame

 
...

/

...

dtmfvv 


 Impulses
 Infinitesimal time
 una tantum

 
...

/

...

mivv




a discontinuous
change of state (velocity)

they model very intense but
short forces
(such as impacts)

103

104

3D Video Games
05: Game Physics - Dynamics 2

2025-03-31

Marco Tarini
Università degli studi di Milano 8

Impulses VS Forces

 Force :
 it determines an acceleration
 acc determines a (continuous!) change of vel
 it’s sustained over meaningful periods of time

 Impulse :
 a (discontinuous!) change of vel
 in reality: just a force with

 very large magnitude
 very short application times

 we model it as a force “pre-multiplied” with its application time
 it’s useful to:

 model phenomena with a time scale << dt
e.g. a tennis ball rebounding against a tennis racket

 control the simulation (direct change of velocity)

Impulses VS Forces

 what does truly happen when it bounces off the ground?

 very strong forces (but not infinite)
 applied for a very short time (but not instantaneous)
 see collision response later for details

about the impulse based approximations

0 msec 1 msec 2 msec 3 msec 4 msec

f⃗f⃗ f⃗

v v
v

v v

105

107

3D Video Games
05: Game Physics - Dynamics 2

2025-03-31

Marco Tarini
Università degli studi di Milano 9

Impulses VS Forces

dt

no impact
force

no impact
force

huge
force

 This can only be modelled as an impulse, not a force
 See also collision response, later

 what does truly happen when it bounces off the ground?

Next: better integration methods for
(Newtonian) dynamics

forces

acceler.

velocity

positions

108

109

3D Video Games
05: Game Physics - Dynamics 2

2025-03-31

Marco Tarini
Università degli studi di Milano 10

Leapfrog Integration Method

Leapfrog Integration Method

 Basic Idea:
store positions at time 𝑘 ȉ 𝑑𝑡
(that is, at t = 0, 1dt, 2dt, 3dt…)
but store velocities at time 𝑘 ȉ 𝑑𝑡 + ½ 𝑑𝑡
(that is, at t = 0.5dt, 1.5dt, 2.5dt, 3.5dt…)

 Equivalent to use a summatory of
the areas of trapezoids,
(having base 𝑑𝑡 and height 𝑣(𝑡))
not rectangles, to compute the integral

110

111

3D Video Games
05: Game Physics - Dynamics 2

2025-03-31

Marco Tarini
Università degli studi di Milano 11

Leapfrog Integration Method

t (in dt)0.0 0.5 1.0 1.5 2.0 2.5

Pos Vel Pos Vel Pos Vel

Leapfrog Integration
first step

t (in dt)0.0 0.5 1.0 1.5 2.0 2.5

Pos0

Vel0

Vel

𝑎 = 𝑓(𝑝଴, . . .)/m
𝑣⃗଴.ହ = 𝑣⃗଴ + 𝑎⃗ ⋅ 𝑑𝑡/2

112

113

3D Video Games
05: Game Physics - Dynamics 2

2025-03-31

Marco Tarini
Università degli studi di Milano 12

Leapfrog Integration

t (in dt)0.0 0.5 1.0 1.5 2.0 2.5

Pos Vel Pos Vel Vel

𝐩ଵ = 𝐩଴ + 𝑣⃗଴.ହ ⋅ 𝑑𝑡

𝑎 = 𝑓(𝐩𝟏, . . .)/m
𝑣⃗ଵ.ହ = 𝑣⃗଴.ହ + 𝑎 ⋅ 𝑑𝑡

𝐩ଶ = 𝐩ଵ + 𝑣⃗ଵ.ହ ⋅ 𝑑𝑡

Pos

𝐩ଷ = 𝐩ଶ + 𝑣⃗ଶ.ହ ⋅ 𝑑𝑡

Pos

𝑎 = 𝑓(𝐩ଶ, . . .)/m
𝑣⃗ଶ.ହ = 𝑣⃗ଵ.ହ + 𝑎 ⋅ 𝑑𝑡

Leapfrog method: pros and cons

 Same cost as Euler – and basically same code
 Velocity stored in status = velocity “half a dt ago”

(and after updating it: “half a frame in the future”)
 Only real difference: the initialization of velocities

 Better theorical accuracy, for the same dt
 better asymptotic behavior:

it’s a “second order” system instead of first!
 cumulated error: proportional to dt2 instead of dt
 error per frame: proportional to dt3 instead of dt2

 Bonus: fully reversible!
 in theory only. Beware of numerical errors.

 But: requires fixed dt during all the simulation
 Otherwise, updates of vel required in all particles

114

115

3D Video Games
05: Game Physics - Dynamics 2

2025-03-31

Marco Tarini
Università degli studi di Milano 13

Verlet integration method

 Idea: remove velocity from state
Instead, store previous position

 Velocity is now implicit
 It’s defined by:
 current pos 𝐩௡௢௪

 last pos 𝐩௢௟ௗ
which we need to record

𝑣⃗ = (𝐩௡௢௪ − 𝐩௢௟ௗ)/𝑑𝑡𝑣⃗ = (𝐩௡௢௪ − 𝐩௢௟ௗ)/𝑑𝑡

𝐩௢௟ௗ𝐩௢௟ௗ

𝐩௡௢௪ = 𝐩௢௟ௗ + 𝑣⃗ · 𝑑𝑡

𝐩௡௢௪

Euler & variants

Verlet

Verlet integration method:
(modifying Euler integration…)

one
step

expanding
this…

init
state

𝐩௡௢௪ = . . .
𝐩௢௟ௗ = . . .

𝑓 = 𝑓𝑢𝑛𝑐𝑡(𝐩௡௢௪, …)

𝑎⃗ = 𝑓/𝑚
𝑣⃗ = (𝐩௡௢௪ − 𝐩௢௟ௗ)/𝑑𝑡
𝑣⃗ = 𝑣⃗ + 𝑎⃗ ⋅ 𝑑𝑡
𝐩୬ୣ୶୲ = 𝐩௡௢௪ + 𝑣⃗ ⋅ 𝑑𝑡

116

117

3D Video Games
05: Game Physics - Dynamics 2

2025-03-31

Marco Tarini
Università degli studi di Milano 14

Verlet integration method
(modifying Euler integration…)

𝐩௢௟ௗ ⟵ 𝐩௡௢௪

𝐩௡௢௪ ⟵ 𝐩௡௘௫௧

𝐩௢௟ௗ ⟵ 𝐩௡௢௪

𝐩௡௢௪ ⟵ 𝐩௡௘௫௧

init
state

one
step

𝐩௡௢௪ ⟵ . . .
𝐩௢௟ௗ ⟵ . . .

𝑓 ⟵ 𝑓𝑢𝑛𝑐𝑡(𝐩௡௢௪)

𝑎⃗ ⟵ 𝑓/𝑚
𝐩௡௘௫௧ ⟵ 2𝐩௡௢௪ − 𝐩௢௟ௗ + 𝑎⃗ ⋅ 𝑑𝑡ଶ

𝐩௡௢௪ ⟵ . . .
𝐩௢௟ௗ ⟵ . . .

Verlet integration method:
geometric interpretation

𝐩௡௘௫௧ = 2 ⋅ 𝐩௡௢௪ − 1 ⋅ 𝐩௢௟ௗ

𝐩௡௘௫௧

𝐩௢௟ௗ

𝐩௡௢௪

𝐩௡௘௫௧ = 𝑚𝑖𝑥(𝐩௢௟ௗ , 𝐩௡௢௪, 2)

𝐩௡௘௫௧ can be written as
an extrapolation
of 𝐩௡௢௪ , 𝐩௢௟ௗ :

𝑣⃗

𝑣⃗

118

119

3D Video Games
05: Game Physics - Dynamics 2

2025-03-31

Marco Tarini
Università degli studi di Milano 15

Verlet: characteristics

 Velocity is kept implicit
 but that doesn’t save RAM:

we need to store previous position instead
 (a point instead of a vector: same memory)

 Good efficiency / accuracy ratio
 accumulated error: order of dt2 (second order method)

 Extra bonus: reversibility
 it’s possible to go backward* in t and

reach the initial state from any state
* (just swap p_now and p_old)

 only in theory… careful with implementation details

Verlet integration +
“Position Based Dynamics” (PBD)

𝐩௢௟ௗ ⟵ 𝐩௡௢௪

𝐩௡௢௪ ⟵ 𝐩௡௘௫௧

init
state

one
step

𝐩௡௢௪ ⟵ . . .

𝐩௢௟ௗ ⟵ . . .

𝑓 ⟵ 𝑓𝑢𝑛(𝐩௡௢௪)

𝑎⃗ ⟵ 𝑓/𝑚

𝐩௡௘௫௧ ⟵ 2𝐩௡௢௪ − 𝐩௢௟ௗ + 𝑎⃗ ⋅ 𝑑𝑡ଶ

Enforce constraints on (𝐩௡௘௫௧)

120

121

3D Video Games
05: Game Physics - Dynamics 2

2025-03-31

Marco Tarini
Università degli studi di Milano 16

Position Based Dynamics (PDB)

 A positional constraint is
an equality/inequality
involving the positions of particles.
 Useful, for example, to model consistency conditions
 Like “solid objects don’t compenetrate each other”,

or “steel bars won’t become shorter or longer than they are”
 We will see many examples

 We enforce (impose) positional constraint directly
by displacing the positions of particles
 Thanks to Verlet: this displacement automatically causes

some appropriate update of the velocity!
 it’s not necessarily correct, but it’s plausible and robust

a formula
with ‘=‘ ‘>’ ‘<‘ etc.

Example of a positional constraint

«I want all particles to stay above ground
(that is, their y must never be negative) »

Imposing constraints like this one is a first part of collision response.
For re-bounces, impulses must still be added (see collisions).

for (each particle i)
{

if (p[i].y < 0) p[i].y = 0;
}

Enforce this constraint: trivial!

122

123

3D Video Games
05: Game Physics - Dynamics 2

2025-03-31

Marco Tarini
Università degli studi di Milano 17

Example of a positional constraint
(here, in 2D physics)

«I want particles to stay
inside a 2D box [0 – 100] x [0 – 100] »

Imposing constraints like this one is a first part of collision response.
For re-bounces, impulses must still be added (see collisions).

for (each particle i)
{

p[i].x = clamp(p[i].x, 0, 100);
p[i].y = clamp(p[i].y, 0, 100);

}

a

b

Enforce this constraint: simple clamp!

1000

100

Verlet + Position Based Dynamics.
Advantages

 flexibility: different constraints can be used to model
many different phenomena
 Useful constraints are straightforward to define
 They are easy to impose (they involve only few particles)
 They can be used to model many possible phenomena
 See following slides for examples

 robustness : plausibility is ensured by explicitly
enforcing the conditions we want to see
 For example: a ball won’t ever be seen outside the box

containing it – and it will also recover from mistakes
 No forces / impulses are needed to enforce any such

consistency conditions

124

125

3D Video Games
05: Game Physics - Dynamics 2

2025-03-31

Marco Tarini
Università degli studi di Milano 18

Verlet: caveats
(see next slides for solutions)

 it assumes a constant dt (time-step duration)
 if dt varies: corrections are needed! (how?)

 Q: how to act on velocity (which is now implicit)?
 for example, how to apply impulses ?

 A: change 𝐩௢௟ௗ instead (how?)

 Q: how to act of positions w/o impacting velocity?
 for example, to apply teleports / kinematic motions ?

 A: change both 𝐩௡௘௪ and 𝐩௢௟ௗ (how?)

 Q: how to apply velocity damps?

Changing the value of dt in Verlet
(whenever it’s not constant, for any reason)

Problem:
if 𝑑𝑡 now changes to a new 𝑑𝑡′

then, all 𝐩௢௟ௗ must be updated to some 𝐩௢௟ௗ
ᇱ

Find 𝐩௢௟ௗ
ᇱ : 𝑣⃗ = (𝐩௡௢௪ − 𝐩௢௟ௗ)/𝑑𝑡

𝑣⃗ = (𝐩௡௢௪ − 𝐩௢௟ௗ
ᇱ)/𝑑𝑡′

𝐩௢௟ௗ
ᇱ = 𝐩௡௢௪ ⋅ (𝑑𝑡 − 𝑑𝑡′)/𝑑𝑡 + 𝐩௢௟ௗ ⋅ 𝑑𝑡′/𝑑𝑡

𝑣⃗ = (𝐩௡௢௪ − 𝐩௢௟ௗ)/𝑑𝑡
𝑣⃗ = (𝐩௡௢௪ − 𝐩௢௟ௗ

ᇱ)/𝑑𝑡′

𝐩௢௟ௗ
ᇱ = 𝐩௡௢௪ ⋅ (𝑑𝑡 − 𝑑𝑡′)/𝑑𝑡 + 𝐩௢௟ௗ ⋅ 𝑑𝑡′/𝑑𝑡

current velocity 𝑣⃗
and position 𝐩௡௢௪

must not change,
so we can only
change 𝐩௢௟ௗ

126

127

3D Video Games
05: Game Physics - Dynamics 2

2025-03-31

Marco Tarini
Università degli studi di Milano 19

 We want to multiply 𝑣⃗ a factor 𝑐ୈ୅୑୔

 before applying accelerations

 We can do that using a more general formula for 𝐩௡௘௫௧

Velocity damping in Verlet

𝐩௡௘௫௧ = 1 + 𝑐ୈ୅୑୔ ⋅ 𝐩௡௢௪ − 𝑐ୢୟ୫୮ ⋅ 𝐩௢௟ௗ + 𝑑𝑡ଶ ⋅ 𝑎⃗

𝐩௡௘௫௧ = 2 ⋅ 𝐩௡௢௪ − 1 ⋅ 𝐩௢௟ௗ + 𝑑𝑡ଶ ⋅ 𝑎⃗

e.g. 0.98
obtained as
(1-𝑑𝑡·𝑐ୈୖ୅ୋ)

 Velocity at next frame: 𝑣⃗ = (𝐩௡௘௫௧ − 𝐩௡௢௪)/𝑑𝑡

implicit

Velocity damping in Verlet
(geometric interpretation)

𝐩௡௘௫௧ = 1.98 ⋅ 𝐩௡௢௪ − 0.98 ⋅ 𝐩௢௟ௗ𝐩௡௘௫௧ = 2 ⋅ 𝐩௡௢௪ − 1 ⋅ 𝐩௢௟ௗ

𝐩௡௘௫௧

𝐩௢௟ௗ

𝐩௡௢௪

𝐩௡௘௫௧ = 𝑚𝑖𝑥(𝐩௢௟ௗ , 𝐩௡௢௪, 2)

Equivalently,
𝐩௡௘௫௧ is an extrapolation
of 𝐩௡௢௪ , 𝐩௢௟ௗ :

𝑣⃗

𝑣⃗

Equivalently,
𝐩௡௘௫௧ is a different extrapolation
of 𝐩௡௢௪ , 𝐩௢௟ௗ :

𝐩௡௘௫௧ = 𝑚𝑖𝑥(𝐩௢௟ௗ , 𝐩௡௢௪, 1.98)

𝐩௡௘௫௧

𝐩௢௟ௗ

𝐩௡௢௪

𝑣⃗

0.98𝑣⃗

a bit shorter

129

130

3D Video Games
05: Game Physics - Dynamics 2

2025-03-31

Marco Tarini
Università degli studi di Milano 20

Example of positional constraint:
equidistance constraint

«Particles a and b must stay at a fixed distance d »

௔ ௕

௕

௔

௔ ௕

௕

௔

I want that…

Enforce equidistance constraints
(assuming equal masses for now)

if 𝐩௔ − 𝐩௕ < 𝑑

if 𝐩௔ − 𝐩௕ > 𝑑 ௕

௔

௕
௔

131

132

3D Video Games
05: Game Physics - Dynamics 2

2025-03-31

Marco Tarini
Università degli studi di Milano 21

Enforce equidistance constraints:
pseudo code
Vector3 pa, pb; // curr positions of a,b
float d; // distance (to enforce)

Vector3 v = pa – pb;
float currDist = v.length;

v /= currDist; // normalization of v

float delta = currDist – d ;

pa += (0.5 * delta) * v;
pb -= (0.5 * delta) * v;

we move each particle half the way
(it makes sense, but see later for why exactly)

Compare:
equidistance constraints vs. springs

 Similar
 they both mean:

these 2 particles “want to be” at this distance (not more, not less)
 but different

 spring:
 applied during

force evaluation step
 affects forces,

therefore accelerations
 models a deformable spring

between the two particles
 of a given length

 sometimes called
a “SOFT” constraint

 equidistance constraint:
 applied during

constraint enforcement
 directly affects

positions
 models a rigid rod

between the two particles
 of a given length

 sometimes called
a “HARD” constraint

 A physic engine can use both at the same time!

some constant scalar parameter 𝐷

133

134

3D Video Games
05: Game Physics - Dynamics 2

2025-03-31

Marco Tarini
Università degli studi di Milano 22

How to enforce a positional constraiont?
(see next lecture for the complete anwser)

When enforcing constraints…
 If a constraint is valid, no problem.
 If it’s not, change particle positions so that it does.
 Problems: there’s usually many possible ways to do
 Which one to pick?

Enforcing a set of constraints

 There are many constraints to impose:
when you solve one maybe you break another!

 Simultaneous enforcement: computationally expensive

 Practical & easy solution: just enforce them in cascade
(similar in concept to Gauss-Seidel solvers):

Repeat until convergence (= max error below threshold)
…but at most for 𝑁ெ஺௑ times! (remember: our simulation is soft real-time)

Constr.
1

Constr.
2

Constr.
N

...

135

136

3D Video Games
05: Game Physics - Dynamics 2

2025-03-31

Marco Tarini
Università degli studi di Milano 23

Enforcing a set of constraints
one after the other (in cascade)

 The whole loop for imposing the constraints happen in
the constraint enforcement phase on one physics step

 Notes about convergence:
 needed iterations (typically) few: e.g. 1 ~ 10 (efficient!).
 if convergence not reached within a given number of steps:

never mind, next frames will fix it (so it’s robust)
 (it is never reached, if constraints are contradictory)
 Optimization (to reduce the number of needed iterations):

solve the most unsatisfied constraints first
 Problem: it’s a sequential approach! 

 parallelized versions (similar to Jacobi solvers) are possible
 they have a worse convergence in practice

(they require more iterations), but each iteration is faster

Compounds of particles
disguised as rigid bodies

PARTICLEPARTICLE

PARTICLEPARTICLE

PARTICLEPARTICLE

137

138

3D Video Games
05: Game Physics - Dynamics 2

2025-03-31

Marco Tarini
Università degli studi di Milano 24

We can combine equidistance
constraints to obtain rigid objects!
 Rigid body dynamics

as emerging behavior
 without explicitly keeping track

their orientation, angular vel,
angular acc., etc.

A box in 2D?
(rigid object)
A configuration of:
• 4 particles
• 6 equidistance constraints

Example

NO

FRAME 0

NO

FRAME 1
before constraints

NO

FRAME 1
after 1st constraint

139

140

3D Video Games
05: Game Physics - Dynamics 2

2025-03-31

Marco Tarini
Università degli studi di Milano 25

Example

NO

FRAME 1
after all constraints

multiple times

FRAME 1
resulting

(implicit) velocities

NO

In total: the “box”,
under gravity + collision
• has rotated
• has gained

angular velocity
(and will keep rotating by
inertia)

…even the system does not
(explicitly) handle
rigid-bodies (and they
rotations, angular velocities,
or angular momentum)

(works in 3D as well!)

We can combine equidistance
constraints to obtain…
 Rigid bodies

 Articulated bodies

 Ragdolls

 Cloth

 Non-elastic ropes

 …and more

141

143

