3D Video Games 2025-03-31
05: Game Physics - Dynamics 2

Course Plan R

Introduction @

Mathematics for 3D Games @@ ©®®©® ®
Scene Graph @

Game 3D Physics .®.. + @d

Game Particle Systems D

Game 3D Models @4

Game Textures D @

lec.
lec.
lec.
lec.
lec.
lec.
lec.
Game Materials €

Game 3D Animations V@@
lec. 10: 3D Audio for 3D Games @
lec. 11: Networking for 3D Games @

lec.

L N DU R WwWN R

lec.

lec. 12: Artificial Intelligence for 3D Games @

lec. 13: Rendering Techniques for 3D Games @

90

. L
Forces (continued): control forces W

e Example: the player pressing the forward button
= a forward force is applied to their avatar
e no physical justification
e “Don’t ask questions, physics engine”
e According to many:
it’s better when that’s not done too much
e the more physically justified the forces, the better

e for example: does the car accelerate...
because a torque is applied to its two traction wheels VS
because a force is applied to its body

e van be harder to control

e see also: gameplay VS cosmetics, control VS realism,
emerging behaviors

91

Marco Tarini
Universita degli studi di Milano 1

3D Video Games

05: Game Physics - Dynamics 2

Marco Tarini

Forces

e Remember all forces acting on a particle add up!
(vector summatory)

e The resulting force is what counts

[)
f « fun(p, ...)
one 5(_?/"1
step .
peptv-dt
Vev+a-dt
\ J/

93

Example of forces: electric forces

e Given two charged particles in p, and pp
with positive or negative charges q, and g

—K qa qp
lpy — Pall®

_ —K qa qp Ppr — Pa
“pb - pa”2 “pb - pa"

—

a

Pa

(p

94

Universita degli studi di Milano

2025-03-31
Fy
'H-_,‘.‘:l |
t=t+dt
.
b~ pa)
® P»o
2

3D Video Games 2025-03-31
05: Game Physics - Dynamics 2

Example of forces: wind pressure i

e Wind is a force acting on surfaces

e The larger the exposed surface to the wind,
the STRONGER / MORE INTENSE the force

e The more orthogonal the surface to the wind direction,
the larger the force

e The stronger the wind pressure w (a vector), the larger the force

0

Y
5 1
f= HE (P1 — Po) X (P2—Po)
P1

2

sl
E‘ sl

-
DF
D8
ISy
N
Y

—hy

95

Example of forces: buoyancy

e Opposite of gravity force f;
e of the submerged part... if it was made of water
e mass of the submerged part = its volume times density of water

96

Marco Tarini
Universita degli studi di Milano 3

3D Video Games

05: Game Physics - Dynamics 2

Marco Tarini

Attrition (or friction) forces R

Isotropic friction forces :
e aforce that opposes any motion, regardless of its direction
e direction: always opposite of current velocity direction

e magnitude: proportional to the speed
(= magnitude of velocity vector)

e note: this force depends on velocity, not positions.

e models the effect of the medium where the motion happens
(air, water, thin space...)

e the denser the medium, the stronger the force
(water >> air >> thin space)

Planar friction forces:

e A force that happens when things slide against each other

e Always parallel to the contact plane (orthogonal to the normal)
e Part of the collision response (see next topic!)

97

L 1
Attrition (or friction) forces: Sk

Sal

@ simulate them with velocity damping !

e A useful trick to simulate isotropic friction:
“velocity damping”
e simply reduce all velocity vectors by a fixed proportion

e for example: scale velocity down by 2% per second
(“drag factor” = 0.02 / sec)
(that is, scale velocity vectors by a factor 0.98)

e Why it makes sense:
Higher speed = more attrition = more loss of speed.
So, attrition = a “fixed tax” (in %) on velocity.

e For planar friction:
e Split velocity into parallel / orthogonal parts

e Apply different Drag factors to each parts

98

Universita degli studi di Milano

2025-03-31

3D Video Games
05: Game Physics - Dynamics 2

2025-03-31

Velocity Damping: how to
(as an example)

e So:
e After a second:
e After 2 seconds?
e After k seconds?
After dt seconds?

)
S T T T

e Objective: “reduce speed by 1.5% every second”

« (1.0 -0.015)
« (1.0 -0.015)% v
« (1.0 — 0.015)* v
« (1.0 -0.015)% v

Which can be approximated with ¥ « (1.0 — 0.015 - dt)v

The approximation is good when this is small

99

Velocity Damping:
pseudo-code

Vec3 position = ..
Vec3 velocity = ..

void initState() {
position = ..
velocity = ..

}

void physicStep(float dt)
{

position += velocity * dt;
velocity += acceleration * dt;

velocity *= (1.0 - DRAG * dt);
}

void main() {

initState();

while (1) do physicStep(1.0 / FPS);
}

Vec3 acceleration = force(positions) / mass;

100

Marco Tarini
Universita degli studi di Milano

3D Video Games 2025-03-31
05: Game Physics - Dynamics 2

Velocity Damping: notes e

e Velocity Damping is useful for robustness
e Prevents the energy to ever increase

e Limitations:

e it may exaggerate frictions of, e.g., air,
especially in absence of contacts

e it's acrude approximation:
attrition forces are not really linear with speed
e |n practice:
e low drag: hardly noticeable (in the short run), increases robustness

e high drag (e.g. 2% per sec): everything feels like to be moving in
molasses (ita: melassa); everything quickly grinds to a halt

e super high drag: (e.g. >25% per sec) basically, no inertia anymore.
May be useful to converge to (local) minimal energy states:
your simulator is basically a solver for statics, not dynamics

101

- - 'L r
Continuity of pos and vel n

e |n real Newtonian physics the state
(pos and vel) can only change continuously

e No sudden jump!
e In practice, sometimes is useful to artificially break
continuity in the simulations
e Discontinuous changes:
e for positions: “teleports”
e forvelocity: “impulses”

e Inthe real world, those variations can well be
consequences of forces, but these forces are not modelled
as such, in our system

102

Marco Tarini
Universita degli studi di Milano 6

3D Video Games

05: Game Physics - Dynamics 2

Marco Tarini

J

. . o A
Dynamics displacements | @ discontinuous
. . \\change ofstate(posmon)/u
VS kinematic U
v
p=p+Vv-dt p=p+dp
aka dynamic aka Kinematic
displacements displacements
Justified Just
by physics “teleportation”
103
Impulses VS Forces SU
\change of state (velocity)
_
\/

e Forces (continuous) e Impulses
e Continuous application e Infinitesimal time
e every frame e unatantum

short forces

they model very intense but
(such as impacts)

104

Universita degli studi di Milano

2025-03-31

3D Video Games 2025-03-31
05: Game Physics - Dynamics 2

Impulses VS Forces L

e force:
e it determines an acceleration
e acc determines a (continuous!) change of vel
e it’s sustained over meaningful periods of time

e Impulse:
e a (discontinuous!) change of vel
e in reality: just a force with
e verylarge magnitude
e very short application times
e we model it as a force “pre-multiplied” with its application time
e it's useful to:

e model phenomena with a time scale << dt
e.g. a tennis ball rebounding against a tennis racket

e control the simulation (direct change of velocity)

105

]
ok

L

Impulses VS Forces 1

e what does truly happen when it bounces off the ground?

3l

0 msec 1 msec 2 msec 3 msec 4 msec

e very strong forces (but not infinite)
e applied for a very short time (but not instantaneous)

e see collision response later for details
about the impulse based approximations

107

Marco Tarini
Universita degli studi di Milano 8

3D Video Games

05: Game Physics - Dynamics 2

Marco Tarini

Impulses VS Forces " 17"

e what does truly happen when it bounces off the ground?

no impact huge no impact
force force force
Is A v A N
—méﬁﬂ—
dt

e This can only be modelled as an impulse, not a force

e See also collision response, later

108

2

.
Next: better integration methods for M:,“L
(Newtonian) dynamics

/ forces
-

positions

N/
@: velocity
\ J

(Y

acceler.

-

109

Universita degli studi di Milano

2025-03-31

3D Video Games

05: Game Physics - Dynamics 2

Marco Tarini

.]
Leapfrog Integration Method EE
110
. p
Leapfrog Integration Method L
e Basic Idea:

store positions attime k - dt

(thatis, at t = 0, 1dt, 2dt, 3dt...)

but store velocities at time k - dt + Y% dt
(that is, at t = 0.5dt, 1.5dt, 2.5dt, 3.5dt...)

e Equivalent to use a summatory of
the areas of trapezoids,
(having base dt and height v(t))
not rectangles, to compute the integral

111

Universita degli studi di Milano

2025-03-31

10

3D Video Games
05: Game Physics - Dynamics 2

Leapfrog Integration Method

t (inap

112

Leapfrog Integration
first step

0.0 0.5 1.0 1.5 2.0

t (inap

| | |
T I I

%

a=f(po,...)/m

130_5 =170+&-dt/2

113

Marco Tarini
Universita degli studi di Milano

2025-03-31

11

3D Video Games 2025-03-31
05: Game Physics - Dynamics 2

Leapfrog Integration

0.0 0.5 1.0 15 2.0 25 t (in dt

P1 = Po + Vo5 - dt P2 =p1 + Uy - dt p3 =Pz +p5-dt

a=f(py,...)/m a=f(py...)/m

131_5 = 170_5 +a-dt 132.5 55 1_7)1.5 +a-dt

114

Leapfrog method: pros and cons

e Same cost as Euler —and basically same code

e Velocity stored in status = velocity “half a dt ago”
(and after updating it: “half a frame in the future”)

e Only real difference: the initialization of velocities
Better theorical accuracy, for the same dt

e better asymptotic behavior:
it’s a “second order” system instead of first!

e cumulated error: proportional to dt? instead of dt
e error per frame: proportional to dt3 instead of dt?
Bonus: fully reversible!

e intheory only. Beware of numerical errors.

But: requires fixed dt during all the simulation
e Otherwise, updates of vel required in all particles

115

Marco Tarini
Universita degli studi di Milano 12

3D Video Games

05: Game Physics - Dynamics 2

Marco Tarini

2025-03-31

Verlet integration method

e |dea: remove velocity from state
Instead, store previous position

e Velocity is now implicit
e |t’s defined by:
e current pos Prow

e last pos Pora
which we need to record

Pold

Pnow = Poia T v - dt
—
UV = (Pnow — Poia)/dt

5 . db
M. Pnow
o

<: Euler & variants

<]; Verlet

n
"‘5%-_;,‘.‘11 1

116

L
Verlet integration method: L0
(modifying Euler integration...)
init Pnow =
state Poid = -« -
b >
f =]iunct(pnow,)
- — di
one &= S/ hises
step UV = (Prnow — Poia)/dt
V=vV+d-dt
Pnext = Pnow t+ v-dt
N J
117

Universita degli studi di Milano

13

3D Video Games
05: Game Physics - Dynamics 2

Verlet integration method e
(modifying Euler integration...)

init Pnow < -

state Pold €+

|)

f = funct®now) S

- = o now
ol f/m Pnow < Pnext
step — 2Pnow — Poia + @ - dit?

Prext Pnow Poid

.)

118

. =

geometric interpretation

N
v
. Prnext
v
Pnow

Poia

Prnext = 2 *Pnow — 1 - Powa

Prext Can be written as
an extrapolation
of Prow, Poia :

Prext = Mix(Poia » Prow, 2)

Verlet integration method: e

119

Marco Tarini
Universita degli studi di Milano

2025-03-31

14

3D Video Games

05: Game Physics - Dynamics 2

Marco Tarini

Verlet: characteristics Wi

e Velocity is kept implicit
e but that doesn’t save RAM:
we need to store previous position instead

e (apointinstead of a vector: same memory)
e Good efficiency / accuracy ratio

e accumulated error: order of dt? (second order method)
e Extra bonus: reversibility

e it's possible to go backward* in t and
reach the initial state from any state
* (just swap p_now and p_old)

e only in theory... careful with implementation details

120

.) -
Verlet integration + S

“Position Based Dynamics” (PBD)

init Pnow < ---

state Poia <

_B \

f — fun(Pnow)
pold — pnow

a«— f/m Prnow €< Pnext

one
step Pnext < 2pnow — Poid +a- dtz

Enforce constraints on (pnext) Q

\

121

Universita degli studi di Milano

2025-03-31

15

3D Video Games

05: Game Physics - Dynamics 2

Marco Tarini

Position Based Dynamics (PDB) L
a formula

e A positional constraint is with =" > < etc.
-

an equality/inequality «———
involving the positions of particles.
e Useful, for example, to model consistency conditions

e Like “solid objects don’t compenetrate each other”,
or “steel bars won’t become shorter or longer than they are”

e We will see many examples
We enforce (impose) positional constraint directly
by displacing the positions of particles

e Thanks to Verlet: this displacement automatically causes
some appropriate update of the velocity!

e it's not necessarily correct, but it’s plausible and robust

122

i . Fr
Example of a positional constraint L0

«! want all particles to stay above ground
(that is, their y must never be negative) »

Enforce this constraint: triviall

for (each particle i)
{

if (p[i]l.y < 0) p[i]l.y = 0O;
}

A Imposing constraints like this one is a first part of collision response.
For re-bounces, impulses must still be added (see collisions).

123

Universita degli studi di Milano

2025-03-31

16

3D Video Games 2025-03-31
05: Game Physics - Dynamics 2

Example of a positional constraint R
(here, in 2D physics)

«| want particles to stay
inside a 2D box [0—100] x [0 —100] »

100 Enforce this constraint: simple clamp!

% for (each particle i)
x {
3% pli] .x = clamp(p[i].x, 0, 100);
plil.y = clamp(p[i].y, 0, 100);

% }
0 100

A Imposing constraints like this one is a first part of collision response.
For re-bounces, impulses must still be added (see collisions).

124

., N
Verlet + Position Based Dynamics. %5y

Advantages

e flexibility: different constraints can be used to model
many different phenomena
e Useful constraints are straightforward to define
e They are easy to impose (they involve only few particles)
e They can be used to model many possible phenomena
e See following slides for examples

e robustness : plausibility is ensured by explicitly
enforcing the conditions we want to see
e For example: a ball won’t ever be seen outside the box

containing it — and it will also recover from mistakes

e No forces / impulses are needed to enforce any such

consistency conditions

125

Marco Tarini
Universita degli studi di Milano 17

3D Video Games

05: Game Physics - Dynamics 2

Marco Tarini

Verlet: caveats L

(see next slides for solutions)

A\it assumes a constant dt (time-step duration)
e if dtvaries: corrections are needed! (how?)

A\ Q: how to act on velocity (which is now implicit)?
e for example, how to apply impulses ?
e A:change Poig instead (how?)

A\Q; how to act of positions w/o impacting velocity?
e for example, to apply teleports / kinematic motions ?
e A:change both Ppew and Poig (how?)

A\ Q: how to apply velocity damps?

126

Changing the value of dt in Verlet -l:,“

(whenever it’s not constant, for any reason)

Problem:
if dt now changes to a new dt’

then, all po;q Must be updated to some p,;4

current velocity ¥

Find plold : v= (pTlOW - pOld)/dt and position Prow
V= (Pnow — p;ld)/dt’ must not change,
so we can only
change Poig
=

p:)ld = Ppow * (dt — dt,)/dt + Potd dt,/dt

127

Universita degli studi di Milano

2025-03-31

18

3D Video Games

05: Game Physics - Dynamics 2

Marco Tarini

, . p
Velocity damping in Verlet Wis

implicit

/
¥

e Velocity at next frame: V= (Pnext — Pnow)/dt

- eg 098
e before applying accelerations ™ obtained as

(1-dt-cprac)

e We can do that using a more general formula for pyext

e We want to multiply v a factor CDAMP.

=

Pnext = 2 Prow — 1 “pouga + dt? - d

Prext = (1 + cpamp) * Prow — Cdamp " Pota T dt?-d

129

., N
Velocity damping in Verlet "-;f.,“f

(geometric interpretation)

a bit shorter

Y
> pnext
v
pnow
Potd Pota

Prext = 2 *Pnow — 1 “Poia Prext = 1.98 - Ppow — 0.98 - poig
Equivalently, Equivalently,
Prext iS an extrapolation Pnext 1S a different extrapolation
of Prow Poid : of Pnow Poid :
Prext = Mix(Poia » Prow, 2) Prext = Mix(Poia » Prow, 1.98)

130

Universita degli studi di Milano

2025-03-31

19

3D Video Games

05: Game Physics - Dynamics 2

Marco Tarini

Example of positional constraint:
equidistance constraint

«Particles a and b must stay at a fixed distance d »

%.

Pa

| want that... ”pa - pb” — d

. | 1

131

Enforce equidistance constraints L
(assuming equal masses for now)
d \
flpa—poll >d g P
Pa
%\'
fllpa—ppll<d =9 p,

132

Universita degli studi di Milano

2025-03-31

20

3D Video Games

05: Game Physics - Dynamics 2

Marco Tarini

Enforce equidistance constraints: L
pseudo code
Vector3 pa, pb; // curr positions of a,b
float d; // distance (to enforce)
Vector3 v = pa - pb;
float currDist = v.length;
v /= currDist; // normalization of v
float delta = currDist - d ;
pa += (0.5 * delta) * v;
pb -—= (0.5 * delta) * v;
k we move each particle half the way
(it makes sense, but see later for why exactly)
133
: 2afl
Compare: -g,,_
equidistance constraints vs. springs
. . some constant scalar parameter D
e Similar
e they both mean:
these 2 particles “want to be” at this distance (not more, not less)
e but different
e equidistance constraint: e spring
e applied during e applied during
constraint enforcement force evaluation step
e directly affects e affects forces,
positions therefore accelerations
e models a rigid rod e models a deformable spring
between the two particles between the two particles
= of agiven length = of a given length
e sometimes called e sometimes called
a “HARD” constraint a “SOFT” constraint
e A physic engine can use both at the same time!
134

Universita degli studi di Milano

2025-03-31

21

3D Video Games
05: Game Physics - Dynamics 2

Marco Tarini

]

How to enforce a positional constraiont? 1,“
(see next lecture for the complete anwser)

When enforcing constraints...
e |f a constraint is valid, no problem.

e If it’s not, change particle positions so that it does.

e Problems: there’s usually many possible ways to do
/\ Which one to pick?

135

. .]
Enforcing a set of constraints el

Sal

e There are many constraints to impose:
when you solve one = maybe you break another!

e Simultaneous enforcement: computationally expensive

e Practical & easy solution: just enforce them in cascade

(similar in concept to Gauss-Seidel solvers):
Constr.
N

Repeat until convergence (= max error below threshold)
...but at most for Ny, 4x times! (remember: our simulation is soft real-time)

136

Universita degli studi di Milano

2025-03-31

22

3D Video Games
05: Game Physics - Dynamics 2

Enforcing a set of constraints
one after the other (in cascade)

e The whole loop for imposing the constraints happen in
the constraint enforcement phase on one physics step

e Notes about convergence:
e needed iterations (typically) few: e.g. 1~ 10 (efficient!).

e if convergence not reached within a given number of steps:
never mind, next frames will fix it (so it’s robust)

e (itis never reached, if constraints are contradictory)
e Optimization (to reduce the number of needed iterations):
solve the most unsatisfied constraints first
/N Problem: it’s a sequential approach! ®
e parallelized versions (similar to Jacobi solvers) are possible

e they have a worse convergence in practice
(they require more iterations), but each iteration is faster

137

Compounds of particles
disguised as rigid bodies

PARTICLE

138

Marco Tarini
Universita degli studi di Milano

2025-03-31

23

3D Video Games 2025-03-31
05: Game Physics - Dynamics 2

We can combine equidistance Wi
constraints to obtain rigid objects!

e Rigid body dynamics
as emerging behavior

e without explicitly keeping track
their orientation, angular vel,
angular acc., etc.

A boxin 2D?

(rigid object)

A configuration of:

* 4 particles

* 6 equidistance constraints

139
. .
Example i
Sl
NO NO N@
FRAME O FRAME 1 FRAME 1
before constraints after 1st constraint
140

Marco Tarini
Universita degli studi di Milano 24

3D Video Games
05: Game Physics - Dynamics 2

Example

FRAME 1 FRAME 1
after all constraints resulting
multiple times (implicit) velocities

In total: the “box”,
under gravity + collision
* has rotated

* has gained

angular velocity
(and will keep rotating by
inertia)

...even the system does not
(explicitly) handle

NO NO rigid-bodies (and they
rotations, angular velocities,
or angular momentum)

(works in 3D as well!)

141

We can combine equidistance
constraints to obtain...

e Rigid bodies g

e Articulated bodies
e Ragdolls

e Cloth

e Non-elastic ropes

e ..and more

e 1 =i

Sal

143

Marco Tarini
Universita degli studi di Milano

2025-03-31

25

