
3D Video Games
05: Game Physics - Dynamics 2

2025-03-31

Marco Tarini
Università degli studi di Milano 1

Course Plan

lec. 1: Introduction
lec. 2: Mathematics for 3D Games
lec. 3: Scene Graph

lec. 4: Game 3D Physics +
lec. 5: Game Particle Systems
lec. 6: Game 3D Models
lec. 7: Game Textures
lec. 9: Game Materials
lec. 8: Game 3D Animations
lec. 10: 3D Audio for 3D Games
lec. 11: Networking for 3D Games
lec. 12: Artificial Intelligence for 3D Games
lec. 13: Rendering Techniques for 3D Games

Forces (continued): control forces

 Example: the player pressing the forward button
⇒ a forward force is applied to their avatar
 no physical justification
 “Don’t ask questions, physics engine”

 According to many:
it’s better when that’s not done too much
 the more physically justified the forces, the better
 for example: does the car accelerate…

because a torque is applied to its two traction wheels VS
because a force is applied to its body

 van be harder to control
 see also: gameplay VS cosmetics, control VS realism,

emerging behaviors

90

91

3D Video Games
05: Game Physics - Dynamics 2

2025-03-31

Marco Tarini
Università degli studi di Milano 2

Forces

one
step

a ← f⃗ /𝑚

𝐩 ← 𝐩 + v ⋅ 𝑑𝑡

v ← v + a ⋅ 𝑑𝑡

 Remember all forces acting on a particle add up!
(vector summatory)

 The resulting force is what counts

dttt

Example of forces: electric forces

 Given two charged particles in 𝐩 and 𝐩

with positive or negative charges 𝑞 and 𝑞

+

- 𝐩𝒃

𝐩𝒂

𝑓 =
−𝐾 𝑞 𝑞

𝐩 − 𝐩
ଶ

𝐩 − 𝐩

𝐩 − 𝐩

force
magnitude

(scalar)
positive or
negative

force
direction
(versor)

=
−𝐾 𝑞 𝑞

𝐩 − 𝐩
ଷ 𝐩 − 𝐩

some global constant

93

94

3D Video Games
05: Game Physics - Dynamics 2

2025-03-31

Marco Tarini
Università degli studi di Milano 3

Example of forces: wind pressure

 Wind is a force acting on surfaces
 The larger the exposed surface to the wind,

the STRONGER / MORE INTENSE the force
 The more orthogonal the surface to the wind direction,

the larger the force
 The stronger the wind pressure 𝑤 (a vector), the larger the force

𝑤

𝐩𝟎

𝐩𝟏

𝐩𝟐

𝑓 =
𝟏

𝟐
(𝐩𝟏 − 𝐩𝟎) × (𝐩𝟐−𝐩𝟎) ȉ 𝑤

𝑤

𝑤

area vector

force magnitude
(scalar)

force
direction
(versor)

(apply 1/3 of 𝑓 on each particle)

Example of forces: buoyancy

 Opposite of gravity force 𝑓
 of the submerged part... if it was made of water
 mass of the submerged part = its volume times density of water

𝑓

mass/volume
aka “specific mass”

or whichever liquid

95

96

3D Video Games
05: Game Physics - Dynamics 2

2025-03-31

Marco Tarini
Università degli studi di Milano 4

Attrition (or friction) forces

 Isotropic friction forces :
 a force that opposes any motion, regardless of its direction
 direction: always opposite of current velocity direction
 magnitude: proportional to the speed

(= magnitude of velocity vector)
 note: this force depends on velocity, not positions.
 models the effect of the medium where the motion happens

(air, water, thin space…)
 the denser the medium, the stronger the force

(water >> air >> thin space)

 Planar friction forces:
 A force that happens when things slide against each other
 Always parallel to the contact plane (orthogonal to the normal)
 Part of the collision response (see next topic!)

Attrition (or friction) forces:
simulate them with velocity damping !

 A useful trick to simulate isotropic friction:
“velocity damping”
 simply reduce all velocity vectors by a fixed proportion
 for example: scale velocity down by 2% per second

(“drag factor” = 0.02 / sec)
(that is, scale velocity vectors by a factor 0.98)

 Why it makes sense:
Higher speed = more attrition = more loss of speed.
So, attrition = a “fixed tax” (in %) on velocity.

 For planar friction:
 Split velocity into parallel / orthogonal parts
 Apply different Drag factors to each parts

97

98

3D Video Games
05: Game Physics - Dynamics 2

2025-03-31

Marco Tarini
Università degli studi di Milano 5

Velocity Damping: how to
(as an example)

 Objective: “reduce speed by 1.5% every second”
 So:

 After a second: �⃗� ← 1.0 − 0.015 �⃗�

 After 2 seconds? �⃗� ← 1.0 − 0.015 ଶ �⃗�

 After 𝑘 seconds? �⃗� ← 1.0 − 0.015 �⃗�

 After 𝑑𝑡 seconds? �⃗� ← 1.0 − 0.015 ௗ௧ �⃗�

 Which can be approximated with �⃗� ← 1.0 − 0.015 ȉ 𝑑𝑡 �⃗�

 The approximation is good when this is small

Drag factor: 0.015

e.g. 1/60 = 0.17 sec

Velocity Damping:
pseudo-code
Vec3 position = …
Vec3 velocity = …

void initState(){
position = …
velocity = …

}

void physicStep(float dt)
{

Vec3 acceleration = force(positions) / mass;
position += velocity * dt;
velocity += acceleration * dt;

}

void main(){
initState();
while (1) do physicStep(1.0 / FPS);

}

velocity *= (1.0 – DRAG * dt);

99

100

3D Video Games
05: Game Physics - Dynamics 2

2025-03-31

Marco Tarini
Università degli studi di Milano 6

Velocity Damping: notes
 Velocity Damping is useful for robustness

 Prevents the energy to ever increase

 Limitations:
 it may exaggerate frictions of, e.g., air,

especially in absence of contacts
 it’s a crude approximation:

attrition forces are not really linear with speed

 In practice:
 low drag: hardly noticeable (in the short run), increases robustness
 high drag (e.g. 2% per sec): everything feels like to be moving in

molasses (ita: melassa); everything quickly grinds to a halt
 super high drag: (e.g. >25% per sec) basically, no inertia anymore.

May be useful to converge to (local) minimal energy states:
your simulator is basically a solver for statics, not dynamics

Continuity of pos and vel

 In real Newtonian physics the state
(pos and vel) can only change continuously
 No sudden jump!

 In practice, sometimes is useful to artificially break
continuity in the simulations

 Discontinuous changes:
 for positions: “teleports”
 for velocity: “impulses”
 In the real world, those variations can well be

consequences of forces, but these forces are not modelled
as such, in our system

101

102

3D Video Games
05: Game Physics - Dynamics 2

2025-03-31

Marco Tarini
Università degli studi di Milano 7

Dynamics displacements
VS kinematic

aka dynamic
displacements

Justified
by physics

. . .
p = p + v ⋅ 𝑑𝑡
. . .

aka Kinematic
displacements

Just
“teleportation”

. . .
p = p + 𝑑p
. . .

a discontinuous
change of state (position)

Impulses VS Forces

 Forces (continuous)
 Continuous application
 every frame

...

/

...

dtmfvv

 Impulses
 Infinitesimal time
 una tantum

...

/

...

mivv

a discontinuous
change of state (velocity)

they model very intense but
short forces
(such as impacts)

103

104

3D Video Games
05: Game Physics - Dynamics 2

2025-03-31

Marco Tarini
Università degli studi di Milano 8

Impulses VS Forces

 Force :
 it determines an acceleration
 acc determines a (continuous!) change of vel
 it’s sustained over meaningful periods of time

 Impulse :
 a (discontinuous!) change of vel
 in reality: just a force with

 very large magnitude
 very short application times

 we model it as a force “pre-multiplied” with its application time
 it’s useful to:

 model phenomena with a time scale << dt
e.g. a tennis ball rebounding against a tennis racket

 control the simulation (direct change of velocity)

Impulses VS Forces

 what does truly happen when it bounces off the ground?

 very strong forces (but not infinite)
 applied for a very short time (but not instantaneous)
 see collision response later for details

about the impulse based approximations

0 msec 1 msec 2 msec 3 msec 4 msec

f⃗f⃗ f⃗

v v
v

v v

105

107

3D Video Games
05: Game Physics - Dynamics 2

2025-03-31

Marco Tarini
Università degli studi di Milano 9

Impulses VS Forces

dt

no impact
force

no impact
force

huge
force

 This can only be modelled as an impulse, not a force
 See also collision response, later

 what does truly happen when it bounces off the ground?

Next: better integration methods for
(Newtonian) dynamics

forces

acceler.

velocity

positions

108

109

3D Video Games
05: Game Physics - Dynamics 2

2025-03-31

Marco Tarini
Università degli studi di Milano 10

Leapfrog Integration Method

Leapfrog Integration Method

 Basic Idea:
store positions at time 𝑘 ȉ 𝑑𝑡
(that is, at t = 0, 1dt, 2dt, 3dt…)
but store velocities at time 𝑘 ȉ 𝑑𝑡 + ½ 𝑑𝑡
(that is, at t = 0.5dt, 1.5dt, 2.5dt, 3.5dt…)

 Equivalent to use a summatory of
the areas of trapezoids,
(having base 𝑑𝑡 and height 𝑣(𝑡))
not rectangles, to compute the integral

110

111

3D Video Games
05: Game Physics - Dynamics 2

2025-03-31

Marco Tarini
Università degli studi di Milano 11

Leapfrog Integration Method

t (in dt)0.0 0.5 1.0 1.5 2.0 2.5

Pos Vel Pos Vel Pos Vel

Leapfrog Integration
first step

t (in dt)0.0 0.5 1.0 1.5 2.0 2.5

Pos0

Vel0

Vel

𝑎 = 𝑓(𝑝, . . .)/m
�⃗�.ହ = �⃗� + �⃗� ⋅ 𝑑𝑡/2

112

113

3D Video Games
05: Game Physics - Dynamics 2

2025-03-31

Marco Tarini
Università degli studi di Milano 12

Leapfrog Integration

t (in dt)0.0 0.5 1.0 1.5 2.0 2.5

Pos Vel Pos Vel Vel

𝐩ଵ = 𝐩 + �⃗�.ହ ⋅ 𝑑𝑡

𝑎 = 𝑓(𝐩𝟏, . . .)/m
�⃗�ଵ.ହ = �⃗�.ହ + 𝑎 ⋅ 𝑑𝑡

𝐩ଶ = 𝐩ଵ + �⃗�ଵ.ହ ⋅ 𝑑𝑡

Pos

𝐩ଷ = 𝐩ଶ + �⃗�ଶ.ହ ⋅ 𝑑𝑡

Pos

𝑎 = 𝑓(𝐩ଶ, . . .)/m
�⃗�ଶ.ହ = �⃗�ଵ.ହ + 𝑎 ⋅ 𝑑𝑡

Leapfrog method: pros and cons

 Same cost as Euler – and basically same code
 Velocity stored in status = velocity “half a dt ago”

(and after updating it: “half a frame in the future”)
 Only real difference: the initialization of velocities

 Better theorical accuracy, for the same dt
 better asymptotic behavior:

it’s a “second order” system instead of first!
 cumulated error: proportional to dt2 instead of dt
 error per frame: proportional to dt3 instead of dt2

 Bonus: fully reversible!
 in theory only. Beware of numerical errors.

 But: requires fixed dt during all the simulation
 Otherwise, updates of vel required in all particles

114

115

3D Video Games
05: Game Physics - Dynamics 2

2025-03-31

Marco Tarini
Università degli studi di Milano 13

Verlet integration method

 Idea: remove velocity from state
Instead, store previous position

 Velocity is now implicit
 It’s defined by:
 current pos 𝐩௪

 last pos 𝐩ௗ
which we need to record

�⃗� = (𝐩௪ − 𝐩ௗ)/𝑑𝑡�⃗� = (𝐩௪ − 𝐩ௗ)/𝑑𝑡

𝐩ௗ𝐩ௗ

𝐩௪ = 𝐩ௗ + �⃗� · 𝑑𝑡

𝐩௪

Euler & variants

Verlet

Verlet integration method:
(modifying Euler integration…)

one
step

expanding
this…

init
state

𝐩௪ = . . .
𝐩ௗ = . . .

𝑓 = 𝑓𝑢𝑛𝑐𝑡(𝐩௪, …)

�⃗� = 𝑓/𝑚
�⃗� = (𝐩௪ − 𝐩ௗ)/𝑑𝑡
�⃗� = �⃗� + �⃗� ⋅ 𝑑𝑡
𝐩୬ୣ୶୲ = 𝐩௪ + �⃗� ⋅ 𝑑𝑡

116

117

3D Video Games
05: Game Physics - Dynamics 2

2025-03-31

Marco Tarini
Università degli studi di Milano 14

Verlet integration method
(modifying Euler integration…)

𝐩ௗ ⟵ 𝐩௪

𝐩௪ ⟵ 𝐩௫௧

𝐩ௗ ⟵ 𝐩௪

𝐩௪ ⟵ 𝐩௫௧

init
state

one
step

𝐩௪ ⟵ . . .
𝐩ௗ ⟵ . . .

𝑓 ⟵ 𝑓𝑢𝑛𝑐𝑡(𝐩௪)

�⃗� ⟵ 𝑓/𝑚
𝐩௫௧ ⟵ 2𝐩௪ − 𝐩ௗ + �⃗� ⋅ 𝑑𝑡ଶ

𝐩௪ ⟵ . . .
𝐩ௗ ⟵ . . .

Verlet integration method:
geometric interpretation

𝐩௫௧ = 2 ⋅ 𝐩௪ − 1 ⋅ 𝐩ௗ

𝐩௫௧

𝐩ௗ

𝐩௪

𝐩௫௧ = 𝑚𝑖𝑥(𝐩ௗ , 𝐩௪, 2)

𝐩௫௧ can be written as
an extrapolation
of 𝐩௪ , 𝐩ௗ :

�⃗�

�⃗�

118

119

3D Video Games
05: Game Physics - Dynamics 2

2025-03-31

Marco Tarini
Università degli studi di Milano 15

Verlet: characteristics

 Velocity is kept implicit
 but that doesn’t save RAM:

we need to store previous position instead
 (a point instead of a vector: same memory)

 Good efficiency / accuracy ratio
 accumulated error: order of dt2 (second order method)

 Extra bonus: reversibility
 it’s possible to go backward* in t and

reach the initial state from any state
* (just swap p_now and p_old)

 only in theory… careful with implementation details

Verlet integration +
“Position Based Dynamics” (PBD)

𝐩ௗ ⟵ 𝐩௪

𝐩௪ ⟵ 𝐩௫௧

init
state

one
step

𝐩௪ ⟵ . . .

𝐩ௗ ⟵ . . .

𝑓 ⟵ 𝑓𝑢𝑛(𝐩௪)

�⃗� ⟵ 𝑓/𝑚

𝐩௫௧ ⟵ 2𝐩௪ − 𝐩ௗ + �⃗� ⋅ 𝑑𝑡ଶ

Enforce constraints on (𝐩௫௧)

120

121

3D Video Games
05: Game Physics - Dynamics 2

2025-03-31

Marco Tarini
Università degli studi di Milano 16

Position Based Dynamics (PDB)

 A positional constraint is
an equality/inequality
involving the positions of particles.
 Useful, for example, to model consistency conditions
 Like “solid objects don’t compenetrate each other”,

or “steel bars won’t become shorter or longer than they are”
 We will see many examples

 We enforce (impose) positional constraint directly
by displacing the positions of particles
 Thanks to Verlet: this displacement automatically causes

some appropriate update of the velocity!
 it’s not necessarily correct, but it’s plausible and robust

a formula
with ‘=‘ ‘>’ ‘<‘ etc.

Example of a positional constraint

«I want all particles to stay above ground
(that is, their y must never be negative) »

Imposing constraints like this one is a first part of collision response.
For re-bounces, impulses must still be added (see collisions).

for (each particle i)
{

if (p[i].y < 0) p[i].y = 0;
}

Enforce this constraint: trivial!

122

123

3D Video Games
05: Game Physics - Dynamics 2

2025-03-31

Marco Tarini
Università degli studi di Milano 17

Example of a positional constraint
(here, in 2D physics)

«I want particles to stay
inside a 2D box [0 – 100] x [0 – 100] »

Imposing constraints like this one is a first part of collision response.
For re-bounces, impulses must still be added (see collisions).

for (each particle i)
{

p[i].x = clamp(p[i].x, 0, 100);
p[i].y = clamp(p[i].y, 0, 100);

}

a

b

Enforce this constraint: simple clamp!

1000

100

Verlet + Position Based Dynamics.
Advantages

 flexibility: different constraints can be used to model
many different phenomena
 Useful constraints are straightforward to define
 They are easy to impose (they involve only few particles)
 They can be used to model many possible phenomena
 See following slides for examples

 robustness : plausibility is ensured by explicitly
enforcing the conditions we want to see
 For example: a ball won’t ever be seen outside the box

containing it – and it will also recover from mistakes
 No forces / impulses are needed to enforce any such

consistency conditions

124

125

3D Video Games
05: Game Physics - Dynamics 2

2025-03-31

Marco Tarini
Università degli studi di Milano 18

Verlet: caveats
(see next slides for solutions)

 it assumes a constant dt (time-step duration)
 if dt varies: corrections are needed! (how?)

 Q: how to act on velocity (which is now implicit)?
 for example, how to apply impulses ?

 A: change 𝐩ௗ instead (how?)

 Q: how to act of positions w/o impacting velocity?
 for example, to apply teleports / kinematic motions ?

 A: change both 𝐩௪ and 𝐩ௗ (how?)

 Q: how to apply velocity damps?

Changing the value of dt in Verlet
(whenever it’s not constant, for any reason)

Problem:
if 𝑑𝑡 now changes to a new 𝑑𝑡′

then, all 𝐩ௗ must be updated to some 𝐩ௗ
ᇱ

Find 𝐩ௗ
ᇱ : �⃗� = (𝐩௪ − 𝐩ௗ)/𝑑𝑡

�⃗� = (𝐩௪ − 𝐩ௗ
ᇱ)/𝑑𝑡′

𝐩ௗ
ᇱ = 𝐩௪ ⋅ (𝑑𝑡 − 𝑑𝑡′)/𝑑𝑡 + 𝐩ௗ ⋅ 𝑑𝑡′/𝑑𝑡

�⃗� = (𝐩௪ − 𝐩ௗ)/𝑑𝑡
�⃗� = (𝐩௪ − 𝐩ௗ

ᇱ)/𝑑𝑡′

𝐩ௗ
ᇱ = 𝐩௪ ⋅ (𝑑𝑡 − 𝑑𝑡′)/𝑑𝑡 + 𝐩ௗ ⋅ 𝑑𝑡′/𝑑𝑡

current velocity �⃗�
and position 𝐩௪

must not change,
so we can only
change 𝐩ௗ

126

127

3D Video Games
05: Game Physics - Dynamics 2

2025-03-31

Marco Tarini
Università degli studi di Milano 19

 We want to multiply �⃗� a factor 𝑐ୈ

 before applying accelerations

 We can do that using a more general formula for 𝐩௫௧

Velocity damping in Verlet

𝐩௫௧ = 1 + 𝑐ୈ ⋅ 𝐩௪ − 𝑐ୢୟ୫୮ ⋅ 𝐩ௗ + 𝑑𝑡ଶ ⋅ �⃗�

𝐩௫௧ = 2 ⋅ 𝐩௪ − 1 ⋅ 𝐩ௗ + 𝑑𝑡ଶ ⋅ �⃗�

e.g. 0.98
obtained as
(1-𝑑𝑡·𝑐ୈୖୋ)

 Velocity at next frame: �⃗� = (𝐩௫௧ − 𝐩௪)/𝑑𝑡

implicit

Velocity damping in Verlet
(geometric interpretation)

𝐩௫௧ = 1.98 ⋅ 𝐩௪ − 0.98 ⋅ 𝐩ௗ𝐩௫௧ = 2 ⋅ 𝐩௪ − 1 ⋅ 𝐩ௗ

𝐩௫௧

𝐩ௗ

𝐩௪

𝐩௫௧ = 𝑚𝑖𝑥(𝐩ௗ , 𝐩௪, 2)

Equivalently,
𝐩௫௧ is an extrapolation
of 𝐩௪ , 𝐩ௗ :

�⃗�

�⃗�

Equivalently,
𝐩௫௧ is a different extrapolation
of 𝐩௪ , 𝐩ௗ :

𝐩௫௧ = 𝑚𝑖𝑥(𝐩ௗ , 𝐩௪, 1.98)

𝐩௫௧

𝐩ௗ

𝐩௪

�⃗�

0.98�⃗�

a bit shorter

129

130

3D Video Games
05: Game Physics - Dynamics 2

2025-03-31

Marco Tarini
Università degli studi di Milano 20

Example of positional constraint:
equidistance constraint

«Particles a and b must stay at a fixed distance d »

I want that…

Enforce equidistance constraints
(assuming equal masses for now)

if 𝐩 − 𝐩 < 𝑑

if 𝐩 − 𝐩 > 𝑑

131

132

3D Video Games
05: Game Physics - Dynamics 2

2025-03-31

Marco Tarini
Università degli studi di Milano 21

Enforce equidistance constraints:
pseudo code
Vector3 pa, pb; // curr positions of a,b
float d; // distance (to enforce)

Vector3 v = pa – pb;
float currDist = v.length;

v /= currDist; // normalization of v

float delta = currDist – d ;

pa += (0.5 * delta) * v;
pb -= (0.5 * delta) * v;

we move each particle half the way
(it makes sense, but see later for why exactly)

Compare:
equidistance constraints vs. springs

 Similar
 they both mean:

these 2 particles “want to be” at this distance (not more, not less)
 but different

 spring:
 applied during

force evaluation step
 affects forces,

therefore accelerations
 models a deformable spring

between the two particles
 of a given length

 sometimes called
a “SOFT” constraint

 equidistance constraint:
 applied during

constraint enforcement
 directly affects

positions
 models a rigid rod

between the two particles
 of a given length

 sometimes called
a “HARD” constraint

 A physic engine can use both at the same time!

some constant scalar parameter 𝐷

133

134

3D Video Games
05: Game Physics - Dynamics 2

2025-03-31

Marco Tarini
Università degli studi di Milano 22

How to enforce a positional constraiont?
(see next lecture for the complete anwser)

When enforcing constraints…
 If a constraint is valid, no problem.
 If it’s not, change particle positions so that it does.
 Problems: there’s usually many possible ways to do
 Which one to pick?

Enforcing a set of constraints

 There are many constraints to impose:
when you solve one maybe you break another!

 Simultaneous enforcement: computationally expensive

 Practical & easy solution: just enforce them in cascade
(similar in concept to Gauss-Seidel solvers):

Repeat until convergence (= max error below threshold)
…but at most for 𝑁ெ times! (remember: our simulation is soft real-time)

Constr.
1

Constr.
2

Constr.
N

...

135

136

3D Video Games
05: Game Physics - Dynamics 2

2025-03-31

Marco Tarini
Università degli studi di Milano 23

Enforcing a set of constraints
one after the other (in cascade)

 The whole loop for imposing the constraints happen in
the constraint enforcement phase on one physics step

 Notes about convergence:
 needed iterations (typically) few: e.g. 1 ~ 10 (efficient!).
 if convergence not reached within a given number of steps:

never mind, next frames will fix it (so it’s robust)
 (it is never reached, if constraints are contradictory)
 Optimization (to reduce the number of needed iterations):

solve the most unsatisfied constraints first
 Problem: it’s a sequential approach!

 parallelized versions (similar to Jacobi solvers) are possible
 they have a worse convergence in practice

(they require more iterations), but each iteration is faster

Compounds of particles
disguised as rigid bodies

PARTICLEPARTICLE

PARTICLEPARTICLE

PARTICLEPARTICLE

137

138

3D Video Games
05: Game Physics - Dynamics 2

2025-03-31

Marco Tarini
Università degli studi di Milano 24

We can combine equidistance
constraints to obtain rigid objects!
 Rigid body dynamics

as emerging behavior
 without explicitly keeping track

their orientation, angular vel,
angular acc., etc.

A box in 2D?
(rigid object)
A configuration of:
• 4 particles
• 6 equidistance constraints

Example

NO

FRAME 0

NO

FRAME 1
before constraints

NO

FRAME 1
after 1st constraint

139

140

3D Video Games
05: Game Physics - Dynamics 2

2025-03-31

Marco Tarini
Università degli studi di Milano 25

Example

NO

FRAME 1
after all constraints

multiple times

FRAME 1
resulting

(implicit) velocities

NO

In total: the “box”,
under gravity + collision
• has rotated
• has gained

angular velocity
(and will keep rotating by
inertia)

…even the system does not
(explicitly) handle
rigid-bodies (and they
rotations, angular velocities,
or angular momentum)

(works in 3D as well!)

We can combine equidistance
constraints to obtain…
 Rigid bodies

 Articulated bodies

 Ragdolls

 Cloth

 Non-elastic ropes

 …and more

141

143

