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. L
Forces (continued): control forces W

e Example: the player pressing the forward button
= a forward force is applied to their avatar
e no physical justification
e “Don’t ask questions, physics engine”
e According to many:
it’s better when that’s not done too much
e the more physically justified the forces, the better

e for example: does the car accelerate...
because a torque is applied to its two traction wheels VS
because a force is applied to its body

e van be harder to control

e see also: gameplay VS cosmetics, control VS realism,
emerging behaviors
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Forces

e Remember all forces acting on a particle add up!
(vector summatory)

e The resulting force is what counts

[ )
f « fun(p, ...)
one 5(_?/"1
step .
peptv-dt
Vev+a-dt
\ J/
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Example of forces: electric forces

e Given two charged particles in p, and pp
with positive or negative charges q, and g

—K qa qp
lpy — Pall®

_ —K qa qp Ppr — Pa
“pb - pa”2 “pb - pa"

—

a

Pa

(p
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Example of forces: wind pressure i

e Wind is a force acting on surfaces

e The larger the exposed surface to the wind,
the STRONGER / MORE INTENSE the force

e The more orthogonal the surface to the wind direction,
the larger the force

e The stronger the wind pressure w (a vector), the larger the force
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Example of forces: buoyancy

e Opposite of gravity force f;
e of the submerged part... if it was made of water
e mass of the submerged part = its volume times density of water
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Attrition (or friction) forces R

Isotropic friction forces :
e aforce that opposes any motion, regardless of its direction
e direction: always opposite of current velocity direction

e magnitude: proportional to the speed
(= magnitude of velocity vector)

e note: this force depends on velocity, not positions.

e models the effect of the medium where the motion happens
(air, water, thin space...)

e the denser the medium, the stronger the force
(water >> air >> thin space)

Planar friction forces:

e A force that happens when things slide against each other

e Always parallel to the contact plane (orthogonal to the normal)
e Part of the collision response (see next topic!)

97

L 1
Attrition (or friction) forces: Sk

Sal

@ simulate them with velocity damping !

e A useful trick to simulate isotropic friction:
“velocity damping”
e simply reduce all velocity vectors by a fixed proportion

e for example: scale velocity down by 2% per second
(“drag factor” = 0.02 / sec)
(that is, scale velocity vectors by a factor 0.98)

e Why it makes sense:
Higher speed = more attrition = more loss of speed.
So, attrition = a “fixed tax” (in %) on velocity.

e For planar friction:
e Split velocity into parallel / orthogonal parts

e Apply different Drag factors to each parts
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Velocity Damping: how to
(as an example)

e So:
e After a second:
e After 2 seconds?
e After k seconds?
After dt seconds?

)
S T T T

e Objective: “reduce speed by 1.5% every second”

« (1.0 -0.015)
« (1.0 -0.015)% v
« (1.0 — 0.015)* v
« (1.0 -0.015)% v

Which can be approximated with ¥ « (1.0 — 0.015 - dt )v

The approximation is good when this is small
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Velocity Damping:
pseudo-code

Vec3 position = ..
Vec3 velocity = ..

void initState() {
position = ..
velocity = ..

}

void physicStep( float dt )
{

position += velocity * dt;
velocity += acceleration * dt;

velocity *= (1.0 - DRAG * dt);
}

void main() {

initState();

while (1) do physicStep( 1.0 / FPS );
}

Vec3 acceleration = force( positions ) / mass;
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Velocity Damping: notes e

e Velocity Damping is useful for robustness
e Prevents the energy to ever increase

e Limitations:

e it may exaggerate frictions of, e.g., air,
especially in absence of contacts

e it's acrude approximation:
attrition forces are not really linear with speed
e |n practice:
e low drag: hardly noticeable (in the short run), increases robustness

e high drag (e.g. 2% per sec): everything feels like to be moving in
molasses (ita: melassa); everything quickly grinds to a halt

e super high drag: (e.g. >25% per sec) basically, no inertia anymore.
May be useful to converge to (local) minimal energy states:
your simulator is basically a solver for statics, not dynamics

101

- - 'L r
Continuity of pos and vel n

e |n real Newtonian physics the state
(pos and vel) can only change continuously

e No sudden jump!
e In practice, sometimes is useful to artificially break
continuity in the simulations
e Discontinuous changes:
e for positions: “teleports”
e forvelocity: “impulses”

e Inthe real world, those variations can well be
consequences of forces, but these forces are not modelled
as such, in our system
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Dynamics displacements | @ discontinuous
. . \\change ofstate(posmon)/u
VS kinematic U
v
p=p+Vv-dt p=p+dp
aka dynamic aka Kinematic
displacements displacements
Justified Just
by physics “teleportation”
103
Impulses VS Forces SU
\change of state (velocity)
_
\/

e Forces (continuous) e Impulses
e Continuous application e Infinitesimal time
e every frame e unatantum

short forces

they model very intense but
(such as impacts)
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Impulses VS Forces L

e force:
e it determines an acceleration
e acc determines a (continuous!) change of vel
e it’s sustained over meaningful periods of time

e Impulse:
e a (discontinuous!) change of vel
e in reality: just a force with
e verylarge magnitude
e very short application times
e we model it as a force “pre-multiplied” with its application time
e it's useful to:

e model phenomena with a time scale << dt
e.g. a tennis ball rebounding against a tennis racket

e control the simulation (direct change of velocity)

105
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L

Impulses VS Forces 1

e what does truly happen when it bounces off the ground?

3l

0 msec 1 msec 2 msec 3 msec 4 msec

e very strong forces (but not infinite)
e applied for a very short time (but not instantaneous)

e see collision response later for details
about the impulse based approximations
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Impulses VS Forces " 17"

e what does truly happen when it bounces off the ground?

no impact huge no impact
force force force
Is A v A N
—méﬁﬂ—
dt

e This can only be modelled as an impulse, not a force

e See also collision response, later

108

2

.
Next: better integration methods for M:,“L
(Newtonian) dynamics

/ forces
-

positions

N/
@: velocity
\ J

( Y

acceler.

-
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Leapfrog Integration Method EE
110
. p
Leapfrog Integration Method L
e Basic Idea:

store positions attime k - dt

(thatis, at t = 0, 1dt, 2dt, 3dt...)

but store velocities at time k - dt + Y% dt
(that is, at t = 0.5dt, 1.5dt, 2.5dt, 3.5dt...)

e Equivalent to use a summatory of
the areas of trapezoids,
(having base dt and height v(t) )
not rectangles, to compute the integral
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Leapfrog Integration Method

t (inap

112

Leapfrog Integration
first step

0.0 0.5 1.0 1.5 2.0

t (inap

| | |
T I I

%

a=f(po,...)/m

130_5 =170+&-dt/2
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Leapfrog Integration

0.0 0.5 1.0 15 2.0 25 t (in dt

P1 = Po + Vo5 - dt P2 =p1 + Uy - dt p3 =Pz +p5-dt

a=f(py,...)/m a=f(py...)/m

131_5 = 170_5 +a-dt 132.5 55 1_7)1.5 +a-dt
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Leapfrog method: pros and cons

e Same cost as Euler —and basically same code

e Velocity stored in status = velocity “half a dt ago”
(and after updating it: “half a frame in the future”)

e Only real difference: the initialization of velocities
Better theorical accuracy, for the same dt

e better asymptotic behavior:
it’s a “second order” system instead of first!

e cumulated error: proportional to dt? instead of dt
e error per frame: proportional to dt3 instead of dt?
Bonus: fully reversible!

e intheory only. Beware of numerical errors.

But: requires fixed dt during all the simulation
e Otherwise, updates of vel required in all particles
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Verlet integration method

e |dea: remove velocity from state
Instead, store previous position

e Velocity is now implicit
e |t’s defined by:
e current pos Prow

e last pos Pora
which we need to record

Pold

Pnow = Poia T v - dt
—
UV = (Pnow — Poia)/dt

5 . db
M. Pnow
o

<: Euler & variants

<]; Verlet

n
"‘5%-_;,‘.‘11 1
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L
Verlet integration method: L0
(modifying Euler integration...)
init Pnow =
state Poid = -« -
b >
f = ]iunct(pnow, )
- — di
one &= S/ hises
step UV = (Prnow — Poia)/dt
V=vV+d-dt
Pnext = Pnow t+ v-dt
N J
117
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Verlet integration method e
(modifying Euler integration...)

init Pnow < -

state Pold €+

| )

f = funct®now) S

- = o now
ol f/m Pnow < Pnext
step — 2Pnow — Poia + @ - dit?

Prext Pnow Poid

. )
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. =

geometric interpretation

N
v
. Prnext
v
Pnow

Poia

Prnext = 2 *Pnow — 1 - Powa

Prext Can be written as
an extrapolation
of Prow, Poia :

Prext = Mix( Poia » Prow, 2)

Verlet integration method: e
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Verlet: characteristics Wi

e Velocity is kept implicit
e but that doesn’t save RAM:
we need to store previous position instead

e (apointinstead of a vector: same memory)
e Good efficiency / accuracy ratio

e accumulated error: order of dt? (second order method)
e Extra bonus: reversibility

e it's possible to go backward* in t and
reach the initial state from any state
* (just swap p_now and p_old)

e only in theory... careful with implementation details

120

. ) -
Verlet integration + S

“Position Based Dynamics” (PBD)

init  Pnow < ---

state Poia <

_B \

f — fun(Pnow)
pold — pnow

a«— f/m Prnow €< Pnext

one
step Pnext < 2pnow — Poid +a- dtz

Enforce constraints on (pnext) Q

\
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Position Based Dynamics (PDB) L
a formula

e A positional constraint is with =" > < etc.
-

an equality/inequality «———
involving the positions of particles.
e Useful, for example, to model consistency conditions

e Like “solid objects don’t compenetrate each other”,
or “steel bars won’t become shorter or longer than they are”

e We will see many examples
We enforce (impose) positional constraint directly
by displacing the positions of particles

e Thanks to Verlet: this displacement automatically causes
some appropriate update of the velocity!

e it's not necessarily correct, but it’s plausible and robust

122

i . Fr
Example of a positional constraint L0

«! want all particles to stay above ground
(that is, their y must never be negative) »

Enforce this constraint: triviall

for (each particle i)
{

if (p[i]l.y < 0) p[i]l.y = 0O;
}

A Imposing constraints like this one is a first part of collision response.
For re-bounces, impulses must still be added (see collisions).
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Example of a positional constraint R
(here, in 2D physics)

«| want particles to stay
inside a 2D box [0—100] x [0 —100] »

100 Enforce this constraint: simple clamp!

% for (each particle i)
x {
3% pli] .x = clamp( p[i].x, 0, 100 );
plil.y = clamp( p[i].y, 0, 100 );

% }
0 100

A Imposing constraints like this one is a first part of collision response.
For re-bounces, impulses must still be added (see collisions).

124

., N
Verlet + Position Based Dynamics. %5y

Advantages

e flexibility: different constraints can be used to model
many different phenomena
e Useful constraints are straightforward to define
e They are easy to impose (they involve only few particles)
e They can be used to model many possible phenomena
e See following slides for examples

e robustness : plausibility is ensured by explicitly
enforcing the conditions we want to see
e For example: a ball won’t ever be seen outside the box

containing it — and it will also recover from mistakes

e No forces / impulses are needed to enforce any such

consistency conditions
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Verlet: caveats L

(see next slides for solutions)

A\it assumes a constant dt (time-step duration)
e if dtvaries: corrections are needed! (how?)

A\ Q: how to act on velocity (which is now implicit)?
e for example, how to apply impulses ?
e A:change Poig instead (how?)

A\Q; how to act of positions w/o impacting velocity?
e for example, to apply teleports / kinematic motions ?
e A:change both Ppew and Poig (how?)

A\ Q: how to apply velocity damps?

126

Changing the value of dt in Verlet -l:,“

(whenever it’s not constant, for any reason)

Problem:
if dt now changes to a new dt’

then, all po;q Must be updated to some p,;4

current velocity ¥

Find plold : v= (pTlOW - pOld)/dt and position Prow
V= (Pnow — p;ld)/dt’ must not change,
so we can only
change Poig
=

p:)ld = Ppow * (dt — dt,)/dt + Potd dt,/dt
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Velocity damping in Verlet Wis

implicit

/
¥

e Velocity at next frame: V= (Pnext — Pnow)/dt

- eg 098
e before applying accelerations ™ obtained as

(1-dt-cprac)

e We can do that using a more general formula for pyext

e We want to multiply v a factor CDAMP.

=

Pnext = 2 Prow — 1 “pouga + dt? - d

Prext = (1 + cpamp) * Prow — Cdamp " Pota T dt?-d

129

., N
Velocity damping in Verlet "-;f.,“f

(geometric interpretation)

a bit shorter

Y
> pnext
v
pnow
Potd Pota

Prext = 2 *Pnow — 1 “Poia Prext = 1.98 - Ppow — 0.98 - poig
Equivalently, Equivalently,
Prext iS an extrapolation Pnext 1S a different extrapolation
of Prow Poid : of Pnow Poid :
Prext = Mix( Poia » Prow, 2) Prext = Mix( Poia » Prow, 1.98)
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Example of positional constraint:
equidistance constraint

«Particles a and b must stay at a fixed distance d »

%.

Pa

| want that... ”pa - pb” — d

. | 1

131

Enforce equidistance constraints L
(assuming equal masses for now)
d \
flpa—poll >d g P
Pa
%\'
fllpa—ppll<d =9 p,

132
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Enforce equidistance constraints: L
pseudo code
Vector3 pa, pb; // curr positions of a,b
float d; // distance (to enforce)
Vector3 v = pa - pb;
float currDist = v.length;
v /= currDist; // normalization of v
float delta = currDist - d ;
pa += ( 0.5 * delta) * v;
pb -—= ( 0.5 * delta) * v;
k we move each particle half the way
(it makes sense, but see later for why exactly)
133
: 2afl
Compare: -g,,_
equidistance constraints vs. springs
. . some constant scalar parameter D
e Similar
e they both mean:
these 2 particles “want to be” at this distance (not more, not less)
e but different
e equidistance constraint: e spring
e applied during e applied during
constraint enforcement force evaluation step
e directly affects e affects forces,
positions therefore accelerations
e models a rigid rod e models a deformable spring
between the two particles between the two particles
= of agiven length = of a given length
e sometimes called e sometimes called
a “HARD” constraint a “SOFT” constraint
e A physic engine can use both at the same time!
134
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]

How to enforce a positional constraiont? 1,“
(see next lecture for the complete anwser)

When enforcing constraints...
e |f a constraint is valid, no problem.

e If it’s not, change particle positions so that it does.

e Problems: there’s usually many possible ways to do
/\ Which one to pick?

135

. . ]
Enforcing a set of constraints el

Sal

e There are many constraints to impose:
when you solve one = maybe you break another!

e Simultaneous enforcement: computationally expensive

e Practical & easy solution: just enforce them in cascade

(similar in concept to Gauss-Seidel solvers):
Constr.
N

Repeat until convergence (= max error below threshold)
...but at most for Ny, 4x times! (remember: our simulation is soft real-time)

136
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Enforcing a set of constraints
one after the other (in cascade)

e The whole loop for imposing the constraints happen in
the constraint enforcement phase on one physics step

e Notes about convergence:
e needed iterations (typically) few: e.g. 1~ 10 (efficient!).

e if convergence not reached within a given number of steps:
never mind, next frames will fix it (so it’s robust)

e (itis never reached, if constraints are contradictory)
e Optimization (to reduce the number of needed iterations):
solve the most unsatisfied constraints first
/N Problem: it’s a sequential approach! ®
e parallelized versions (similar to Jacobi solvers) are possible

e they have a worse convergence in practice
(they require more iterations), but each iteration is faster

137

Compounds of particles
disguised as rigid bodies

PARTICLE
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We can combine equidistance Wi
constraints to obtain rigid objects!

e Rigid body dynamics
as emerging behavior

e without explicitly keeping track
their orientation, angular vel,
angular acc., etc.

A boxin 2D?

(rigid object)

A configuration of:

* 4 particles

* 6 equidistance constraints

139
. .
Example i
Sl
NO NO N@
FRAME O FRAME 1 FRAME 1
before constraints after 1st constraint
140
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Example

FRAME 1 FRAME 1
after all constraints resulting
multiple times (implicit) velocities

In total: the “box”,
under gravity + collision
* has rotated

* has gained

angular velocity
(and will keep rotating by
inertia)

...even the system does not
(explicitly) handle

NO NO rigid-bodies (and they
rotations, angular velocities,
or angular momentum)

(works in 3D as well!)

141

We can combine equidistance
constraints to obtain...

e Rigid bodies g

e Articulated bodies
e Ragdolls

e Cloth

e Non-elastic ropes

e ..and more

e 1 =i

Sal
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