
3D Video Games
05: Game Physics - Dynamics 3

2025-04-03

Marco Tarini
Università degli studi di Milano 1

Course Plan

lec. 1: Introduction 
lec. 2: Mathematics for 3D Games 
lec. 3: Scene Graph 

lec. 4: Game 3D Physics  + 
lec. 5: Game Particle Systems 
lec. 6: Game 3D Models 
lec. 7: Game Textures 
lec. 9: Game Materials 
lec. 8: Game 3D Animations 
lec. 10: 3D Audio for 3D Games 
lec. 11: Networking for 3D Games 
lec. 12: Artificial Intelligence for 3D Games 
lec. 13: Rendering Techniques for 3D Games 

Positional constraints
(in general terms, and more formally)

 A predicate defined on the position(s) of a
number of particles (usually, a small number: 1 - 4)

𝒞: 𝐩a
, 𝐩b

, 𝐩c
, … → { 𝑡𝑟𝑢𝑒 , 𝑓𝑎𝑙𝑠𝑒 }

 For example, the equidistance constraints is
𝒞 𝐩a

, 𝐩b
⇔ 𝐩a − 𝐩b = 𝑘஼ைேௌ்

 They can be an equality (=) or an inequality (≤ or ≥)

144

145

3D Video Games
05: Game Physics - Dynamics 3

2025-04-03

Marco Tarini
Università degli studi di Milano 2

Equality positional constraints:
examples

 Equidistance constraint (the one we have seen):
«these N particles must stay at distance 𝑘»
 E.g: because they are linked by a metal rod of length 𝑘

 Fixed positions:
«this particle must stay in position 𝐩ୟ »
 the particle is “pinned” in position
 trivial to impose, but still useful!

 Coplanarity / collinearity:
«these N particles must stay on a line / on a plane»

Equality positional constraints:
other examples

 Volume preservation:
“The volume delimited by the squishy ballon
defined by these particles is a constant 𝑘େ୓୒ୗ୘ ”
(e.g., because it’s filled with water)

 How to impose it (approximation):
1. Estimate current total volume 𝑣

2. uniform scale the entire object by factor 𝑓େ୓୒ୗ୘ /𝑣
య

around its barycenter

146

147

3D Video Games
05: Game Physics - Dynamics 3

2025-04-03

Marco Tarini
Università degli studi di Milano 3

Inequality positional constraints:
example

 “please don’t sink below the ground”
assuming the ground is the plane Y = 0

C 𝐩ୟ ⇔ 𝐩ୟ. 𝑦 ≥ 0

 Trivial to impose:
just set the 𝑦 to 0, if it is < 0

Inequality positional constraints:
example

 “this particle must stay above
this fixed (and arbitrary) plane”
 For example, because the plane is a solid unmovable slab
 The plane is given by a point on it 𝐩୯ and its normal 𝑛ො௤

C(𝐩ୟ) ⇔ 𝐩ୟ − 𝐩୯ ȉ 𝑛ො௤ ≥ 0

 To enforce it (when it’s not already true)
𝐩ୟ − 𝐩୯ ȉ 𝑛ො௤ = 0

148

149

3D Video Games
05: Game Physics - Dynamics 3

2025-04-03

Marco Tarini
Università degli studi di Milano 4

Inequality positional constraints:
example

 These two particles must be at least 𝑘஼ைேௌ் apart
𝒞 𝐩a

, 𝐩b
⇔ 𝐩a − 𝐩b

≥ 𝑘஼ைேௌ்

 For example, because they are the centers of two rigid
spheres and 𝑘஼ைேௌ் is the sum of their radii

 part of “collision handling” (a topic for later)

𝐩௕𝐩௔𝐩௕𝐩௔

Inequality positional constraints:
example

 These two particles must be at most 𝑘஼ைேௌ் apart
𝒞 𝐩a

, 𝐩b
⇔ 𝐩a − 𝐩b

≤ 𝑘஼ைேௌ்

 For example, because they are tied by an inextensible
rope that has length 𝑘஼ைேௌ் (but can fold)

𝐩௕𝐩௔

We can be this
far apart at most

𝐩௕𝐩௔

Closer?
No prob!

150

151

3D Video Games
05: Game Physics - Dynamics 3

2025-04-03

Marco Tarini
Università degli studi di Milano 5

Inequality positional constraints:
example

 Angle constraints, e.g. 𝛂 < 𝛂୫ୟ୶

with 𝛂 the angle between 𝐩௔ , 𝐩௕ and 𝐩௕, 𝐩௖

 e.g., on joints: «elbows cannot bend backward»
 (a constraint between three particles!)

𝐩௕

𝐩௖

𝐩௔

Enforcing one positional constraint
(in general terms)

 Inequality constraint:
1. Test: does the inequality already hold?
2. If so: do nothing
3. If not: enforce it as an equality (=) instead (see below)

 Equality constraint:
 All involved particles must be displaced

from that current position, so that it now holds
 There can be infinite ways to achieve this!

Question: Which one to pick?

152

153

3D Video Games
05: Game Physics - Dynamics 3

2025-04-03

Marco Tarini
Università degli studi di Milano 6

Enforcing one equality constraint:
(assuming for now all particles have same mass)

 Answer:
minimize the sum of squared displacements
(with respect to current position)

 For each kind of constraint, we need to find the
minimizer analytically
(“analytically” = in closed form = “with formulas”
= “solving a simple math problem on paper”)
 That’s what we did for the equality constraint

Enforcing one equality constraint
(assuming for now all particles have same mass)

 We want to enforce a constraint 𝒞 on particles a , b , c, …
currently in positions 𝐩a ,

𝐩b ,
𝐩c

…

𝒞: 𝐩a
, 𝐩b

, 𝐩c
, … → { 𝑡𝑟𝑢𝑒 , 𝑓𝑎𝑙𝑠𝑒 }

 We must apply the displacements 𝑑ୟ , 𝑑ୠ , 𝑑ୡ that are the

among all the choices that satisfy this,

we want the one which minimizes this

argmin
ௗ౗ , ௗౘ , ௗౙ,…

𝑑ୟ

ଶ
+ 𝑑ୠ

ଶ
+ 𝑑ୡ

ଶ
+ ⋯

such that 𝒞 pa + 𝑑ୟ ,pb + 𝑑ୠ ,pc + 𝑑ୡ , …

154

155

3D Video Games
05: Game Physics - Dynamics 3

2025-04-03

Marco Tarini
Università degli studi di Milano 7

Enforcing one equality constraint
(in general, for particles with different mass)

 We want to enforce a constraint 𝒞 on particles a , b , c, …
in positions 𝐩a ,

𝐩b ,
𝐩c

… and with masses 𝑚a, 𝑚b, 𝑚c
, …

𝒞: 𝐩a
, 𝐩b

, 𝐩c
, … → { 𝑡𝑟𝑢𝑒 , 𝑓𝑎𝑙𝑠𝑒 }

 We must apply the displacements 𝑑ୟ , 𝑑ୠ , 𝑑ୡ which are the:

among all the choices that satisfy this,

we want the one which minimizes this

argmin
ௗ౗ , ௗౘ , ௗౙ,…

ma 𝑑ୟ

ଶ
+mb 𝑑ୠ

ଶ
+mc 𝑑ୡ

ଶ
+ ⋯

such that 𝒞 pa + 𝑑ୟ ,pb + 𝑑ୠ ,pc + 𝑑ୡ , …

Example: solve the
“please don’t sink under this plane”

C(𝐩ୟ) ⇔ 𝐩ୟ − 𝐩୕ ȉ 𝑛ො୕ ≥ 0

 We need to find displacement 𝑑ୟ as:

argmin
ௗ౗

𝑚ୟ 𝑑ୟ

ଶ

such that 𝐩ୟ + 𝑑ୟ − 𝐩୕ ȉ 𝑛ො୕ ≥ 0

 And the solution (in closed form) is…

a point on plane
(const)

plane normal
(const)

156

157

3D Video Games
05: Game Physics - Dynamics 3

2025-04-03

Marco Tarini
Università degli studi di Milano 8

Enforcing it (in pseudocode)

Vector3 pA; // curr positions of a
float mA; // its mass (no effect in this case)
Vector3 pQ; // point on the plane
Vector3 nQ; // normal of the plane (unitary)

Vector3 v = pA – pQ;
float currDist = Vector3.dot(v , nQ);

if (currDist < 0.0) {
pA -= currDist * nQ; // project it out!

} else {} // constrain already ok: nothing to do

Example: the equidistance constraint
(for unequal masses)

𝒞 𝐩a
, 𝐩b

⇔ 𝐩a − 𝐩b = 𝑘஼ைேௌ்

 With particle masses ma , mb

 We need to the displacements dୟ , dୠ
found by minimizing:

argmin
ௗ౗ , ௗౘ

ma dୟ

ଶ
+ mb dୠ

ଶ

such that pa + dୟ − pb + dୠ = 𝑘஼ைேௌ்

 And the solution (in closed form) is…

158

159

3D Video Games
05: Game Physics - Dynamics 3

2025-04-03

Marco Tarini
Università degli studi di Milano 9

Example: the equidistance constraint
(for unequal masses)
Vector3 pa, pb; // curr positions of a,b
float ma, mb; // masses of a,b
float d; // distance (to enforce)

Vector3 v = pa – pb;
float currDist = v.length;

v /= currDist; // normalization of v

float delta = currDist – d ;

/* solutions of the minimization: */
pa += (mb/(ma+mb) * delta) * v;
pb -= (ma/(ma+mb) * delta) * v;

Observe and verify

 The way we have seen last time to impose…
 The “fixed position” constraint
 The “equidistance” constraint
 The “stay above ground” constraint
 Etc.

are the ones that minimize the (mass-weighted)
squared displacements of the particles
 (assuming equal mass)
 (the mass is not always relevant)

160

161

3D Video Games
05: Game Physics - Dynamics 3

2025-04-03

Marco Tarini
Università degli studi di Milano 10

Position Based Dynamics (PBD)
summary

 A general approach for computing dynamics
 Ingredients:

1. Use Verlet integration on particles
 their velocities are implicit
 changes in positions induce changes in velocities

2. Implement positional constraints on particles
(e.g., equidistance constraint) to model things like:

 Rigid bodies
(their angular speed is an emerging feature!)

 Articulated / non rigid bodies
 Basic collision response

Not forces:
a summary

 We have seen many types of real-world forces that are
modelled by things that aren’t “forces” in our simulation:
 Frictions

 In reality: a (“dissipative”) force contrasting motion
 Can be simulated by: drag / velocity damp

 Violent and sudden events, such as impacts
 In reality: a very strong force that is sustained for a very short time << dt
 E.g.: hitting a ball with a baseball bat
 Must be simulated by: impulses

 Resistance forces
 In reality: a force that contrast and nullifies an external force (e.g. gravity)
 E.g.: what prevents your computer from falling through the table RN
 Can be simulated by: positional constraints

. . .

𝑓 = function(𝐩௜, . . .)
. . .

not in here

162

163

3D Video Games
05: Game Physics - Dynamics 3

2025-04-03

Marco Tarini
Università degli studi di Milano 11

3D video games

notes on the sand-box
coding done in class

Marco Tarini

Objective of this sandbox

Implement a PBD system
(particle based, with Verlet integration) on Unity
 Plan:

 we will NOT enable the default Unity physics system
 instead, implement our ad-hoc physics “by hand”, by scripting
 note: in a normal project, there’s no good reason to do that!

 How to NOT enable physics in Unity:
 Just don’t add to any GameObject,

any “RigidBody” component (implements dynamics) and
any “Collider” component (implements collision handling)

 we will still use the Graphics engine of Unity
 scene-graph support: GameObjects, their Transforms, etc

174

175

3D Video Games
05: Game Physics - Dynamics 3

2025-04-03

Marco Tarini
Università degli studi di Milano 12

Background: “behaviors” in Unity

 In Unity, a behavior is a script associated
to a Game-Object

 It’s a C# class, with predefined methods employed by
the rest of the engine:
 Start() – called at start at before the first rendering
 FixedUpdate() – called at fixed interval,

just before the hard-wired physics step
 Update() – called before rendering this object (if it is rendered)

 The value dt is exposed as Time.FixedDeltaTime

For details on methods used in this sandbox,
refer to the implementation on the website!

Our Particles and their behavior

 Our particle is a game-object
 an element of the scene graph (1st level)
 rendered as a small sphere

 Its associated behavior class includes the fields:
 pOld (a point): for Verlet dynamics
 mass (scalar): a constant
 drag (another scalar): % of speed lost per second

 and the methods:
 Start(): sets pOld
 FixedUpdate(): is called by unity every physical step, and

calls oneStep()
 oneStep(): performs a Verlet integration step

176

177

3D Video Games
05: Game Physics - Dynamics 3

2025-04-03

Marco Tarini
Università degli studi di Milano 13

Implementation detail:
pNow VS transform.position

 For each particle, the current position
is already kept by unity as its transform.position :
 Reminder: it’s the translation/position component of the global

transformation
 (BTW it’s not really a field, but it pretends to be – C# “property”)
 Reminder: physical simulation always acts in world space
 That value is used by the rendering engine, the GUI, etc.

 For clarity, we use a variable pNow instead
but we will keep it in sync with transform.position
 at the beginning of each integration step:

pNow ← transform.position
 at the end:

transform.position ← pNow

OneStep() method of particles
(Verlet integration step)
Called by fixedUpdate() (that is, once per frame)
Basic Verlet integration is called here. In it:
 We add forces

that depends only on this one particle
 Such as gravity

 We include enforcement of positional constraints
which depend only on this one particle
 ground collision (“please stay above ground”)

 We include velocity dumping
 see dump computation in prev slides

178

181

3D Video Games
05: Game Physics - Dynamics 3

2025-04-03

Marco Tarini
Università degli studi di Milano 14

Adding “sticks”

 Sticks are GameObjects representing rigid “rods”
connecting two particles

 Rendering (just for the looks):
 A stick is rendered as a small cylinder

(a cylinder mesh associated to the Game Object)
 Before each rendering (so, in the Update() method)

its (global) transformation is computed anew,
so that the cylinder is scaled, rotated, and translated
to make it graphically connect the two particles

 This new transformation replaces the old at every frame
 (therefore, it doesn't matter where we place them in the

scene: they will teleport to the right location at each frame)

Adding “sticks”

 Fields:
 References to connected particles A and B

This is a public field: so we will set them in the Unity GUI !
 Rest length (scalar)

This is automatically computed on Start
as the initial distance between particles A and B

 Methods:
 FixedUpdate: enforces the positional constraints, acting on

the position (transform.position) of the two particles
 See slides for how this is to be computed from their current

positions

183

184

3D Video Games
05: Game Physics - Dynamics 3

2025-04-03

Marco Tarini
Università degli studi di Milano 15

Sand-box project: results.

 Combining multiple particles and sticks,
we construct meta-objects such as…
 Rigid objects
 Ropes, pendulums

 Rigid objects exhibit a plausible…
 Angular velocity
 Angular momentum
 Correct barycenter around which to rotate

(try assigning a different mass to a particle)
 Stability (does the barycenter “fall inside the basis”?)
 Reaction of impacts with the ground / walls (bounces)

…without having coded any of that

A limitation of our current
implementation

 We are relying on Unity hard-coded mechanism to run the
FixedUpdates (and Start) methods for all scene objects
 therefore, we have no control on the order in which they are run

 In particular, the positional constraints of the sticks are run
only once per physics step
 either before, or after the Verlet integration step

 In theory, we want to enforce them
multiple times, or until convergence
 together with the collision of particles with ground etc

 Still, the simulation works with only small inconsistencies

185

186

