
3D Video Games
06: Game Physics - Collisions 2

2025-04-10

Course Plan

lec. 1: Introduction 
lec. 2: Mathematics for 3D Games 
lec. 3: Scene Graph 

lec. 4: Game 3D Physics  + 
lec. 5: Game Particle Systems 
lec. 6: Game 3D Models 
lec. 7: Game Textures 
lec. 9: Game Materials 
lec. 8: Game 3D Animations 
lec. 10: 3D Audio for 3D Games 
lec. 11: Networking for 3D Games 
lec. 12: Artificial Intelligence for 3D Games 
lec. 13: Rendering Techniques for 3D Games 

Collision Handling:
two tasks

 Collision detection
 find out when they occur
 if so, produce collision data

for the response

 Collision response
 compute their effects

this topic

34

35

3D Video Games
06: Game Physics - Collisions 2

2025-04-10

YES

Produce:
 a hit positions
 a hit normal

 orientation of the
impacted place

Collision?
«do any two things

overlap?»

NO

From detection to response

The collision detection needs to tell us, for any pair of
objects:

 Collision? Yes / No
 «do these two things overlap?»

And, when it’s a Yes…
 a hit positions
 normal of one collision plane
 ~orientation of the impacted part
 needed to: resolve the impact

(except for purely inelastic)
 needed to: apply frictions

«collision data»
output of detection,
input of rensponse

36

37

3D Video Games
06: Game Physics - Collisions 2

2025-04-10

Collision detection:
a preliminary observation

 The usual concern: efficiency
 Key observation:
 almost 100% of the object pairs,

almost 100% of the times,
do NOT collide.

 for efficiency,
the «no-collision» case needs to be optimized

 «early reject» of the collision test

Example:
this billiard shot

 A very “collidey”
situation, right?

 Let’s do the math
 Balls: 16 (=15+1)
 Ball pairs: 136 (=16 x 17 / 2)
 Shot duration: ~10 seconds = ~600 physics frames
 Assume ~2 collisions for each ball (a lot!) during the shot:

~16 collision events (each involving two balls)
 Total: 16 collisions over 136 x 600 tests.
 only < 0.02% of the potential collisions will collide!

38

40

3D Video Games
06: Game Physics - Collisions 2

2025-04-10

Collision detection

 Efficiency issues:

a)how to test between object pairs:
 In an efficient way

b)how to avoid quadratic explosions
of needed tests
 n objects → n2 tests ?

Geometric proxies

41

42

3D Video Games
06: Game Physics - Collisions 2

2025-04-10

Geometric proxies

A simplified representation of the
shape (the geometry) of the object, to be used in its place

 Note:it can be a much cruder approx.
than the 3D model used for rendering

Two possible uses:
 as Bounding Volume

 upper bound of the object spatial extension;
object is all inside the proxy

→ for conservative tests

 as Collider (or hit-box, or collision proxy)
 approximation of the object spatial extension
→ for approximate tests

(“hit-box” is a misnomer: it’s not necessarily a “box”)

Geometric proxies:
not only for collision detection, but also:

 physic engine
 extract data for collision response
 extract barycenter position

& moment-of-inertia matrix of rigid bodies
assuming uniform density (Ita.: peso specifico)

 rendering optimizations
 “view frustum culling” (bounding volumes)
 “occlusion culling” (bounding volumes)

 AI
 visibility tests
 in general, simulation of NPC senses

 GUI
 picking (one of the ways to do that)

 3D sounds
 sound absorption in 3D sound propagation

Basically, for any other task except rendering:
internally, objects are their proxies.

43

44

3D Video Games
06: Game Physics - Collisions 2

2025-04-10

Semantic of a
geometric proxy

intersection(proxy_A , <something>) ≠ Ø ?

 if proxy_A serves as Bounding Volume :
 if NO: no collision
 if YES: we don’t know yet

 if proxy_A serves as Collider :
 if NO: no collision
 if YES: collision detected !

 Must compute collision data
from proxy_A

Despite this semantic difference,
the data types used to represent proxies are the same.

Another proxy,
a point,
a ray…

An «early reject»
optimization

An approximation
of the
collision detection

Geometric proxies: shapes

 Spheres
 Capsules
 Half-spaces
 Axis Aligned (Bounding) Boxes

 aka AABB
 Generic Boxes
 Discrete Oriented Polytopes

 aka DOP
 Ellipsoids

 axis aligned or not
 Cylinders
 Convex polyhedrons
 Non-convex polyhedrons

 Meshes
 …

45

46

3D Video Games
06: Game Physics - Collisions 2

2025-04-10

choosing Geometric Proxies:
things to consider

 Workload needed to compute / create them
 RAM space needed to store them
 Behavior under transformations
 the ones we plan to use, e.g., roto-translations

 How good is the geometric approximation
 for the objects we will use in the game
 for bounding volumes ==> how small / tight is it?
 for colliders ==> how accurate is the approximation?

 Workload for an intersection test
 with other proxies, points, rays
 also, how { easy to compute | good } is the collision data?

by algorithms

assets!
by artists

Geometric proxies:
A sphere

  easy to compute as a boundary
 only the approximatively optimal one

  tiny to store
 center (a point) + radius (a scalar) – or, a vec4 (𝑐௫, 𝑐௬, 𝑐௭, 𝑟)

  collision test: trivial (against spheres or other things)
 how? exercise – including collision data computation

  can easily undergo translation/rotation/scaling
 how? exercise – note: scaling must be uniform

  approximation quality:
 it depends on the object (as usual)
 often, quite poor:
 e.g.: a head? A character? A house? A sword?

47

49

3D Video Games
06: Game Physics - Collisions 2

2025-04-10

Geometry proxies:
«Capsule»

 Generalizes the sphere:
 Sphere ≜ the set of points

having dist. from a point ≤ radius
 Capsule ≜ the set of points

having dist. from a segment ≤ radius
 i.e. 1 cylinder ended with 2 half-spheres (all 3 with same radius)

 Stored as:
 a segment (its two end-points)
 a radius (a scalar)

 Exercise :
 Q: how does it «score» w.r.t. the above measures?
 (A: quite well → a very popular proxy in games!)

Geometry proxies:
a half-space

 Trivial, but useful!
 e.g. for a flat terrain,
 or a wall
 or an invisible “force field” to limit the game level

(hated by players :-)

 Storage:
 a point on the plane + its normal
 better: a normal + a distance from the origin
 which is a vec4 (𝑛௫, 𝑛௬, 𝑛௭, 𝑘)

 how to test , transform, etc:
 easy and efficient algorithms (check me)

nො

51

53

3D Video Games
06: Game Physics - Collisions 2

2025-04-10

Mini-exercise:
Plane VS Point test

 Input: a point 𝐪
and a plane given by:
 its normal: nො
 a point on it at random: 𝐩

 Q: on which side of the plane is 𝐪 ?
 A: it’s the sign of

nො ȉ 𝐪 − 𝐩 =
nො ȉ 𝐪 − nො ȉ 𝐩 =
nො ȉ 𝐪 + 𝑘 =

(𝑛௫, 𝑛௬, 𝑛௭, 𝑘) ȉ (𝑞௫, 𝑞௬, 𝑞௭, 1)

𝐪

𝐩
nො

a 4D vector
representing the plane

𝑘 = −nො ȉ 𝐩
(minus distance of plane from origin)

nො

nො

nො

Which geometric proxy types
to support in a game (-engine)?

 an implementation choice of the Physics Engine
 # of intersection-test algorithms to be implemented :

quadratic with # of supported types

Type A

Type B

Type C

Type A Type B Type C

algorithm
1

algorithm
2

algorithm
3

algorithm
10

algorithm
7

algorithm
6

VS a Point a Ray

algorithm
4

algorithm
11

algorithm
8

algorithm
5

algorithm
12

algorithm
9

useful,
e.g.
for visibility

54

55

3D Video Games
06: Game Physics - Collisions 2

2025-04-10

Example: algorithm to
testing capsule VS capsule

Input:
 Capsule 0: point 𝐚଴ 𝐛଴ radius 𝑟଴

 Capsule 1: point 𝐚ଵ 𝐛ଵ radius 𝑟ଵ

Output:
 Do they intersect?
 If so, intersection point 𝐩 and normal nො?
Solution (trace):
1. Find 𝐜଴ and 𝐜ଵ , the two points on the two segments closest

to each other (see exercises on points and vectors)
2. Test: 𝐜଴ − 𝐜ଵ < 𝑟଴ + 𝑟ଵ ?

3. Is so, collision detected with nො =
𝐜బି𝐜భ

𝐜బି𝐜భ

Geometry proxies:
«AABB»

Axis Aligned Bounding Box
 Consists of three interval

𝑚𝑖𝑛௫, 𝑚𝑎𝑥௫ × 𝑚𝑖𝑛௬, 𝑚𝑎𝑥௬ × 𝑚𝑖𝑛௭, 𝑚𝑎𝑥௭

 Concise to store
 Two 3D points: 𝑚𝑖𝑛௫, 𝑚𝑖𝑛௬, 𝑚𝑖𝑛௭ & 𝑚𝑎𝑥௫, 𝑚𝑎𝑥௬, 𝑚𝑎𝑥௭

 Easy to find the minimal AABB encapsulating a given set of points
 Easy to test for collision VS a point, or another AABB

 Exercise: how?
 Under transforms:

  if rotated, an AABB expands
 (but can be easily scaled / translated)

As the name implies,
typically used as BOUNDING
volume, not a collider

Cartesian product

new

56

58

3D Video Games
06: Game Physics - Collisions 2

2025-04-10

«AABB» : 2D example
(Axis Aligned Bounding… Rectangle)

AABB

𝑥

𝑚𝑎𝑥௬

𝑚𝑎𝑥௫

𝑦

𝑚𝑖𝑛௬

𝑚𝑖𝑛௫

Axis Aligned Bounding Box

𝑥

𝑚𝑎𝑥௬

𝑚𝑎𝑥௫

𝑦

𝑚𝑖𝑛௬

𝑚𝑖𝑛௫

AABB𝑧

𝑚𝑎𝑥௭

𝑚𝑖𝑛௭

59

60

3D Video Games
06: Game Physics - Collisions 2

2025-04-10

Geometry proxies:
Oriented Bounding Box (OBB)

 A “parallelepiped”
 generalized version

of AABB:
it’s not axis-aligned

 storage:
 a rotation (e.g. a quaternion) +
 an AABB

 Can be freely transformed
 note: but only if scaling is uniform

 Tests: still relatively easy (exercise: how to test points?)

Geometry proxies (in 2D):
a Convex Polygon

 Intersection of half-planes
 each delimited by a line

 Stored as:
 a collection

of (oriented) lines
 Test:
 a point is inside the proxy

iff
it is in each half-plane

 Flexible (good approximations)…
and still moderate complexity

62

64

3D Video Games
06: Game Physics - Collisions 2

2025-04-10

Geometry proxies (in 3D):
a Convex Polyhedron

 Intersection of half-spaces
 Same as previous,

but in 3D
 stored as a collection

of oriented planes
 each plane = a vec4

(normal, distance from origin)
 tests: inside the proxy

iff
inside each half-space

Geometry proxies
a (general) Polyhedron

 A… luxury Collider
 The most accurate approximations
 But, the most expensive tests / storage

 Specific algorithms to test for collisions
 requiring some preprocessing
 and data structures (BSP-trees, see next)

 Creation (treat them as meshes):
 sometimes, with automatic simplification
 often, hand-designed by artists (low poly modelling)

 Wait, is this the same as a 3D mesh used for rendering?
 Many differences (compare with mesh later, lecture 6)

not worth it for a Bounding Volume !

potentially concave

66

68

3D Video Games
06: Game Physics - Collisions 2

2025-04-10

BSP-trees to encode
a Polyhedral proxy (Concave too)

IN

OUT

BSP-tree
(Binary Spatial Partitioning tree)

 A way to store a (convex, or concave) polyhedron
 A hierarchical structure
 a binary tree
 root = all space, child-nodes = partition of parent
 each internal node is split by an arbitrary plane
 plane stored as (𝑛௫, 𝑛௬, 𝑛௭, 𝑘)

 each leaf: one bit: “inside” or “outside” the proxy
 tree is precomputed (and optimized) for a given

polyhedron
 to test a point = traverse the tree from the top down

in 2D: a line

69

71

3D Video Games
06: Game Physics - Collisions 2

2025-04-10

3D meshes for geometry proxies vs
3D meshes for rendering (notes)

 Proxy-meshes are
 much lower res (e.g. < 102 faces)
 no attributes of course (no uv-mapping, no color, etc)

 made of generic polygons, not just tris (as long as they are flat)

 always closed, water-tight (inside != outside)

 very different internal representation:
a set of bounding planes (in a BSP tree probably)
in addition to collection of vertices (3D points)

see lecture on 3D models later

Collision detection on
Polyhedral proxies: examples

 Point VS Polyhedron:
just follow the tree, end in an IN or OUT leaf

 Sphere VS Polyhedron: more complex (think about it)
 Segment / Ray VS Polyhedron: also complex (think

about it)
 Polyhedron VS Polyhedron: much more complex.

A trace of an algorithm is:
 Preprocessing: find and store all edges (segments)

of all Polyhedra (each edge: two endpoints)
 At testing time: test all edges of polyhedron A vs

polyhedron B (segment VS polyhedron), and viceversa

72

73

3D Video Games
06: Game Physics - Collisions 2

2025-04-10

3D meshes for geometry proxies vs
3D meshes for rendering (notes)

 Proxy meshes are
 much lower res (e.g. < 102 faces)
 no attributes (no uv-mapping, no color, etc)

 based generic polygons, not just tris (as long as they are flat)

 closed, water-tight (inside != outside)

 different internal representation:
if convex : a set of bounding planes
if convex : a BSP tree

see lecture on 3D models later

Geometry Proxies: Composite

 A proxy can be a union of sub-proxies
 inside the proxy iff inside of any sub

proxy
 Very expressive
 better approximation for many objects,

even with few proxies
 note: union of convex proxies

can be concave !
 Efficient to test / store
 Compared to alternratives

 Difficult to construct automatically

74

76

3D Video Games
06: Game Physics - Collisions 2

2025-04-10

Collision Proxy examples

mesh for rendering
(~600 tri faces)

(in wireframe) Collider:
10 (polygonal) faces

Collision Proxy examples

mesh for rendering
(~300 tri faces)

(in wireframe)

Collider:
12 (polygonal) faces

77

78

3D Video Games
06: Game Physics - Collisions 2

2025-04-10

YESNO
Done

Collision with
collider?

Done!
(early reject)

Collision with
bounding proxy?

NO

Bounding Volume + Collision Proxy
a very good combo

YES

Produce collision data.
Trigger response.

Bounding Volume + Collision Proxy
a very good combo

if (!intersect(boundingVol, X))

{

// nothing to do: early reject!

}

else {

CollisionData d;

if (collide(hitBox, X , &d))

{

collision_rensponse(d);

}
}

a simpler
Bounding Volume

with, inside,
a more complex
Collision Object
approximating

the object

note: intersect and collide
aren’t the same function here

79

80

3D Video Games
06: Game Physics - Collisions 2

2025-04-10

How to construct a geometry proxy
to be used as a collider?
“Given an object representation M,
build a good collision proxy for it”
 M = 3D model of e.g. a dragon, a castle, a character…

 difficult task to automatize (by algorithms)
 especially if we want to pick simpler (more efficient) proxies

(such as compound of a few spheres, capsules, boxes)
 especially if we need good approximations

 often done manually (by digital artists)

Geometry proxies for colliders are assets !

How to construct a geometry proxy
to be used as a bounding volume?
“Given an object representation M,
build a thigh bounding volume for it”
 a M = 3D model of e.g. a dragon, a castle, a character…

 This task can be (and is) automatized
 note: finding the optimal (smallest possible) bounding volume:

computationally difficult (can be NP complete)
 find a “good enough” bounding volume: a lot easier (heuristics)
 can be done on the fly during game execution

 For example, think about algorithms to find
a bounding volumes of type…
 AABB (trivial!)
 Sphere – i.e. a “bounding sphere” (less trivial)
 Capsule, OBB (more difficult!)

81

82

3D Video Games
06: Game Physics - Collisions 2

2025-04-10

Digression: collision detection
in traditional 2D sprite-based games

 An easier problem
 We can leverage collision detection for 2D sprites

 it’s accurate: «pixel perfect»
 it’s efficient: HW supported

(hard-wired support, as part of sprite rendering)
 little need for proxy approximations for colliders

(same structure – the sprite – both for collision and for rendering)
 easy bounding “volume”: axis-aligned bounding-rectangle of the sprite

NO COLLISION NO COLLISION COLLISION

in screen space

Collision detection: When?

physic
step

Dynamics
• Forces / impulses

including collision response

• Positional constraints (in PBD)

including non-compenetration

Collision Detection

𝑡 ← 𝑡 + 𝑑𝑡

83

84

3D Video Games
06: Game Physics - Collisions 2

2025-04-10

Collision detection:
strategies

 Static Collision detection
 (“a posteriori”, “discrete”)
 approximated
 simple + quick

 Dynamic Collision detection
 (“a priori”, “continuous”)
 accurate
 resource consuming

𝑡

𝑡 + 𝑑𝑡

COLLISION

𝑡

NO COLLISION

𝑡 + 𝑑𝑡

COLLISION

Collision detection:
Static

 Check for collision only after each step

 Problem: non-penetration is temporarily violated
 patching it in collision response

not always easy

 Problem: «tunneling»
 Can happen if:

- 𝑑𝑡 too large,
- or, speed too large
- or, objects too thin

«static»
(because objects are tested
as if they are still)

«a posteriori»
(because coll. are detected
after they happen)

«discrete»
(because we check at
discrete time intervals)

𝑡

NO COLLISION

𝑡 + 𝑑𝑡

NO COLLISION 

aka

85

86

3D Video Games
06: Game Physics - Collisions 2

2025-04-10

Collision detection:
Dynamic

 Much more accurate detection
 Bonus:

 no need to «teleport the object in the safe position».
 it never left a safe position!
 It can be easier to prevent penetrations than to heal them

 Much more difficult to do
 for one-way collision: check the penetration between the static object

and the volume swept (ita: spazzato) by the moving object during the
entire duration of the frame

 easy for: points (swept volume = segment)
 easy for: spheres (swept volume = capsule – which one?)

 Basically, not practical to do in any other these
 and even then, should only be used when required

«dynamic»
(because moving objects
are tested)

«a priori»
(because coll. are detected
before they happen)

«continuous»
(because it is checked
over a temporal interval)

Aka:aka

Collision detection

 Efficiency issues:

a) test between object pairs:
 Must be efficient

b)avoid quadratic explosions
of needed tests
 n objects → n2 tests ?

87

88

3D Video Games
06: Game Physics - Collisions 2

2025-04-10

Collision detection: the broad phase

 So far, we have seen how to detect a collision
between one given pair of objects

 Problem: we don’t want to test every pair of objects!
 Even excluding static-static pairs: still way too many (quadratic)

 Idea: in a «broad phase»,
we quickly identify pairs of objects that need testing
 Objects that are safely far from each other are never even tested
 Only objects that are… “suspiciously close” must be tested

 Note: the board phase must be strictly conservative
 not ok to discard object pairs that actually collided,
 ok to test objects that didn’t actually collide

 Let’s see strategies to do so

The «broad-phase» of coll. detection
(avoiding quadratic explosion of # of tests)

 Classes of solutions:

1) Sorting-based algorithms

2) spatial indexing structures

3) BVH – Bounding Volume Hierarchies

89

90

3D Video Games
06: Game Physics - Collisions 2

2025-04-10

One AABB (here, in 2D)

AABB

𝑥

𝑚𝑎𝑥௬

𝑚𝑎𝑥௫

𝑦

𝑚𝑖𝑛௬

𝑚𝑖𝑛௫

Sorting based algorithms
Sweep and Prune (SAP)

AABB

AABB

AABB

AABB

AABB

AABB

𝑥

AABB

𝑚𝑖𝑛௫ 𝑚𝑎𝑥௫𝑚𝑖𝑛௫ 𝑚𝑎𝑥௫

91

92

3D Video Games
06: Game Physics - Collisions 2

2025-04-10

Sweep And Prune (SAP) strategy
(aka “Sort and Sweep”)

1. Bound:
 Quickly find the AABB for each collider

(in its current rotation + translation)
 E.g.: use the AABB encapsulating the

transformed Bounding Sphere

2. Sort 𝑚𝑖𝑛௫ and 𝑚𝑎𝑥௫ of all AABB together
 Just adjust the sorting used in the previous frame
 It will be already almost sorted! To exploit this…
 use an incremental sorting algorithm, such as quicksort

3. Sweep the sorted intersections, from smaller to larger
 Quickly detect intersecting intervals in 𝑥 (how?)

4. Prune: among AABB intervals, ignore the ones
that don’t also intersect in both 𝑦 and 𝑧
 Test the other pairs for collision

2𝑟

2𝑟

only
O(𝑛 log 𝑛)

Even
faster!
O(𝑛)

The «broad-phase» of coll. detection
(avoiding quadratic explosion of # of tests)

 Classes of solutions:

1) Sorting-based algorithms

2) spatial indexing structures

3) BVH – Bounding Volume Hierarchies

93

94

3D Video Games
06: Game Physics - Collisions 2

2025-04-10

Spatial indexing structures

 Data structures to accelerate queries of the kind:
“I’m in this 3D pos. Which object(s) are around me, if any?”

 Tasks:
 (1) construction / update

 for static parts of the scene, a preprocessing. Cheap! 
 for moving parts of the scene, an update! Consuming! 
 (another good reason to tag them)

 (2) access / usage
 as fast as possible

 Commonest structures:
 Regular Grid
 kD-Tree
 Oct-Tree

 and its 2D equivalent: the Quad-Tree
 BSP Tree

ba

fedc

jihg

lk

ponm

q

r

s

Regular Grid (or: lattice)

the scene

a
b
c
d
e
f
g
h
i
j
k
l

m
n
o
p
q
r
s

95

96

3D Video Games
06: Game Physics - Collisions 2

2025-04-10

Regular Grid (or: lattice)

 Array 3D of cells (all the same size)
 each cell = a list of pointers to collison objects

 Indexing function:
 Point3D  cell index, (constant time!)

 Construction: (“scatter” approach)
 for each object B, find all the cells it touches, add a pointer to B to them

 Queries: (“gather” approach)
 given query point p,

return all object in corresponding cell and adjacent ones
 Difficult choice: cell size

 too small: memory occupancy explodes
 too big: too many objects in one cell (not efficient)

 Problem: RAM size
 Cubic with resolution!
 Most cells are empty: hash tables can be used

to balance efficiency / storage-update cost

kD-trees

the scene

A

A

B C

B C

D

E

D E

F G

F G

I

H H I

K

J

J K

L
M

L MN O

N O

D E F

H

K

M

N O

97

98

3D Video Games
06: Game Physics - Collisions 2

2025-04-10

kD-trees

 Hierarchical structure: a tree
 each node: a subpart of the 3D space
 root: all the world
 child nodes: partitions of the father
 objects linked to leaves

 kD-tree:
 binary tree
 each node: split over one dimension (in 3D: X,Y,Z)
 variant:

 each node optimizes (and stores) which dimension, or
 always same order: e.g. X then Y then Z

 variant:
 each node optimizes the split point, or
 always in the middle

Quad-Tree
(in 2D)

the (2D) world

99

100

3D Video Games
06: Game Physics - Collisions 2

2025-04-10

Octree (or oct-tree)
(same, for 3D)

Quad-trees (in 2D)
Octrees (in 3D)

 Similar to kD-trees, but:
 tree: branching factor: 4 (in 2D) or 8 (in 3D)
 each node: splits halfway across all dimensions at once

X and Y in 2D
X and Y and Z in 3D

 Construction (just as kD-trees):
 continue splitting until end nodes have

few enough objects
(or limit depth reached)

101

102

3D Video Games
06: Game Physics - Collisions 2

2025-04-10

BSP-tree
Binary Spatial Partition tree

the world

BSP-tree, this time
as a spatial indexing structure

 root = all scene,
 child-nodes = partition of parent (as usual)
 spatial query = traverse the tree from the top down (as usual)
 a binary tree (so far, same as as kD-trees)
 each node is split by an arbitrary plane

 plane is stored at node, as (𝑛௫, 𝑛௬, 𝑛௭, 𝑘)

 planes can be optimized for a given scene
 e.g., to go for a 50%-50% object split at each node
 e.g., to leave exactly one object at leaves
 Pro:

they can be optimized for optimal queries: better query time!
 Con:

must be optimized during construction: worse construction time!

in 2D: a line

103

104

3D Video Games
06: Game Physics - Collisions 2

2025-04-10

The «broad-phase» of coll. detection
(avoiding quadratic explosion of # of tests)

 Classes of solutions:

1) Sorting-based algorithms

2) spatial indexing structures

3) BVH – Bounding Volume Hierarchies

BVH
Bounding Volume Hierarchy

105

106

3D Video Games
06: Game Physics - Collisions 2

2025-04-10

BVH –
Bounding Volume Hierarchies

E

F

A
D

C
B

FE

DA CB

BVH –
Bounding Volume Hierarchies

E

F

A
D

C
BG

H

J

K

M
M

J K

FG EH

DA CB

107

108

3D Video Games
06: Game Physics - Collisions 2

2025-04-10

BVH
Bounding Volume Hierarchy

 We can use the hierarchy already defined by the
scene graph
 instead of a spatially derived one

 associate a Bounding Volumes to each node
 rule: a BV of a node bounds all objects in the subtree

 construction / update: quick! 
 bottom-up

 using it:
 top-down: visit (how?)
 note: it’s not a single root to leaf path

 may need to follow multiple children of a node
(in a BSP-tree: only one)

Collision Detection:
to learn more…

Christer Ericson (ACTIVISION):
Real-Time Collision Detection
The Morgan Kaufmann Series in
Interactive 3-D Technology
HAR/CDR Edition
Elsevier

109

111

3D Video Games
06: Game Physics - Collisions 2

2025-04-10

Physics Engine:
an implementation issue for GPU
 Task: Dynamics

 (forces, speed and position updates…)
 simple structures, fixed workflow
 highly parallelizable: GPU possible

 Task: Constraints Enforcement
 still moderately simple structures, fixed workflow
 problem: collision constraints not know a-priori
 still highly parallelizable: hopefully, GPU possible

 Task: Collisions Detection
 non-trivial data structures, hierarchies, recursive algorithms, sorting…
 hugely variable workflow

 e.g.: quick on no-collision, more work to do when the rare collisions occur
 difficult to parallelize: CPU
 but the outcome affects the other two tasks (e.g., creates constraints)

 ==> CPU-GPU communication, and ==> GPU structures updates
(problematic on many architectures)

End of Game Physics.
To gather more info…

 Erwin Coumans
SIGGRAPH 2015 course
http://bulletphysics.org/wordpress/?p=432

 Müller-Fischer et al.
Real-time physics
(Siggraph course notes, 2008)
http://www.matthiasmueller.info/realtimephysics/

 David H. Eberly:
Game Physics (2nd Edition)
MK Press

 Ian Millington:
Game Physics Engine Development (2nd Edition)
MK Press

112

113

