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3D Videogames
Università degli Studi di Milano

Rendering in 3D games
(bridge lecture)

Course Plan 

lec.  1: Introduction  
lec.  2: Mathematics for 3D Games 
lec.  3: Scene Graph 

lec.  4: Game 3D Physics  + 
lec.  5: Game Particle Systems 
lec.  6: Game 3D Models 
lec.  7: Game Materials
lec.  8: Game Textures 
lec.  9: Game 3D Animations 
lec. 10:  3D Audio for 3D Games 
lec. 11: Networking for 3D Games  
lec. 12: Artificial Intelligence for 3D Games  
lec. 13: Rendering in 3D Games  

★
bridge

lectures

For a more general, 
deeper discussion 

of many of the subjects
of this lecture, see the courses

CG 
«Computer Graphics»

and
RTGP

«Real-Time 
Graphics Programming»
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Part I: modelling 
the Light environment

Material
parameters
(data modelling
the «material»)

Illuminant
(data modelling

lighting
environment)

Geometric data
(e.g. normal, 
tangent dirs,
camera pos)

LO
CAL

LIG
H

TIN
G

final
R, G, B

( the lighting
equation )

Illuminant
(data modelling

the Lighting 
Environment)

Approaches to model 
the light environment in 3D games

We are about to discuss three different approaches:
 Discrete lighting environment
 a finite set of individual light sources

(including one global ambient factor for the “leftovers”)
 Densely sampled lighting environment
 environment maps: 

textures sampling incoming light from every dir
 Basis functions
 a spherical function stored as 

spherical harmonics coefficients
(They can be, and are, used jointly)
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A simple lighting equation (recap)
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+

material parameter

light parameter

3D geometric data

nlerp( 𝑉෠ , 𝐿෠ , 0.5)

+

diffuse
term

specular
term

the «half-way» vector

repeat and sum for 
each light

The “ambient” 
term (once)

Discrete illumination environments:
a set of individual light sources

 a finite set of “light sources”…
 not too many (e.g. ≤16)
 if more, can be assigned “priorities” to pick a subset

for every object being rendered

 each light sits in a node of the scene-graph!
 each light can be of one type…
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Lights sources types & their attributes

directional lights
 intensity / color
 direction

point lights 
 intensity / color
 position
 falloff function 

(opt.)

spot-lights
 intensity / color
 position
 direction
 falloff function (opt.)
 angular falloff funct.
 “cookie” texture

Lights sources types & their attributes

ambient light
 intensity / color
 (that’s it)

but can be shadowed 
AMBIENT OCCULSION 
term.
E.g., stpred per-texel or 
per-vertex
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Ambient light

 models other all minor light sources + bounces
 light incoming “from every direction at every position”

 examples: 
 in an overcast outdoor scene: it’s high 

 dim shadows, flat looking lighting: 
every photographs’ favorite for portraits!

 in realistic outer space: it’s zero
 in any other scenes : something in between

 e.g., sunny day, or a torch-lit cave
 the lighting env. includes only one (or zero) 

lights of this type
 All other light sources are spatialized

 Thus, they reside in the scene graph!

Types of discrete light sources

directional lights

positional lights spot-lights

ambient light

has direction

ha
s p

os
iti

on
no

 p
os

iti
on

no direction
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Types of discrete light sources : examples

directional lights

positional lights 
(or point-lights) spot-lights

ambient light

has direction

ha
s p

os
iti

on
no

 p
os

iti
on

no direction

Skylight.
Cloudy day illumination.

Interior light (dim)

Sunlight. 
Moonlight.

An explosion.
A wooden torch.

A lightbulb.

A flashlight/torchlight
A spotlight

Car head-lights

Discrete illumination environments

world

B

E F
G

T0 T1
T2

T3

T4
T5

T6

DC

L

T7

headlight
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Distance fall-off functions
for positional lights & spotlights

 The light intensity of positional lights and spotlights
can be dimmed down with distance from light-pos P୐ 
to the pos of the fragment being lit P୔, 
scaling it by some positional «fall-off» function 

f୔ P୐  −  P୔

 In the real physical world,  f୔  𝑑 = 1/𝑑ଶ

 Other functions can be used, for example f୔  𝑑 = 1/𝑑

P୐ 

P୔ 

P୔ closer: 
more lit

farther: 
less lit

Angular fall-off functions
for spotlights

 For spotlights, the intensity is also dimmed down by 
an «angular fall-off» function, when the direction of 
the light emission 𝐸෠ mismatches the light direction 𝐿෠ , 
scaling it by some function

fୈ −𝐸෠ ȉ 𝐿෠

 For example,  fୈ  𝑥 = 1/𝑥ଵ଴

inside 
the light beam:

more lit

𝐸෠

𝐿෠

outside
the light beam:

less lit

𝐿෠
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Spot-lights: 
they can use a “cookie texture”

as an alternative to angular fall-off functions

In the lighting equation…
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+ +

diffuse
term

specular
term

repeat and sum for 
each discrete light source

the one
“ambient” light

pos of 
light

pos of 
lit point Light RGB intensity

For a dir. light: a consts. 
For point or spot-lights:
attenuated by falloff
functions (of angle, dist)

For directional lights: 
just a constant.

For a point- or spot-light: 

parameter
= of the

light

𝐿෠ =
P୐  −  P୔

P୐  −  P୔

Light incoming direction
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Types of discrete lights (a summary)

SpotlightPositional lightDirectional lightAmbient light

Position (point) 
& 

Direction (versor)
Position (point)

Direction (versor)

(assumed at infinite)

(nothing)

(assumed at infinite)
geometry

Falloff function
Angular falloff 

function 
“Cookie” texture

Falloff function--can be 
dimmed by

Cast shadows
(usually) dynamically computed 

(see shadow-map technique later)

Ambient Occlusion
either baked 

(per-vertex or per-texel)
or dynamically computed 

(see SSAO later)

can be 
blocked by

0-N0-N0-N0-1how many

Color/Intensity (RGB value)
Priority?parameters

In which space to compute 
the lighting?

𝑛ො  ȉ   𝐿෠  
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nlerp( 𝑉෠ , 𝐿෠ , 0.5)

+ +

l 𝑒ୖ 
l 𝑒ୋ 
l 𝑒୆ 

diffuse
term

specular
term

ambient
term

emission
term

the «half-way» vector

repeat for each light source

+ + +

Q : in which space to express them
(and the others like them)?

A: whichever! 
As long as it’s the same space

𝐿෠ =
P୐  −  P୔

P୐  −  P୔

3D Point / Vector / Versor
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A

world
space

B D
F

T0 T1
T2

T3

T4
T5

T6

DE

H

C

T7

TBN
space

object
space

light dir

light pos

light pos
light pos & dir

vertex
normals

VIEW
space

HERE?
(easy view dir)

LIGHT
space

HERE?
(easy light pos/dir)

HERE?
(easy light dir)

HERE?
(easy vert normal)

HERE!
(easy texture normals)

In which space to compute 
the lighting?

In which space to compute 
the lighting?
 All versors that used in the lighting equation

must be expressed in the same space
 view direction, light directions, half-way vector, normals, tangent dirs…

 Choice: which space to use?
 View space? (the space of the camera)
 World space?
 Local object space? (the space of the object currently being rendered)

 With normal maps, usually the most efficient solution is:
 Use the same space the normals are expressed
 For normal stored as attribute: the Local Space (aka Object Space)
 For Tangent Space normal maps: in the the TBN space. Then…
 …all other versors must be transformed into this space, per vertex!
 …the normals accessed from the texture can be used right away, per pixel!
 This minimizes the amount of transformations needed

for anisotropic materials
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Discrete illumination environments
Summary

 Pros: 
 simple to re-position / reorient individual light sources

 both at design phase, or dynamically (at game exec)
 good model of illuminants as:

 explosions (positional lights) 
 car lights (spot-lights lights) 
 sun direction (directional light)

 relatively easy to compute (hard, soft) shadows for them 
 Cons:

 each light source requires extra processing … for each pixel!
 therefore: hard limit on their number. Prioritize them
 therefore: are often given a (physically unjustified) radius of effect

 they don’t model well: 
 area light sources (e.g., from back-lit clouds)
 reflections on metal objects

see 
shadow
map
later

main illuminants
of the scene!

Continuous lighting environments
 In general terms, a lighting environment is a function: 

𝑓 ∶  Ω ⟶ ℝ

or   𝑓 ∶  Ω ⟶ ℝଷ if we want colored lights

 𝑓 𝑑 ෡ ≡ intensity/color of light coming form dir 𝑑 ෡ ∈  Ω

 With discrete light environments:
 we define 𝑓 only over a few 𝑑መ , with individual lights
 𝑓 is a constant for every other 𝑑መ , with ambient light
 note: 𝑓 is potentially defined differently in every point in the scene

(when positional light sources are used). Cool!
 note: 𝑓 is dynamic: it’s easy to move & turn on/off & change lights

from a frame to the next. Cool!
 But its not super realistic lighting env.

set of unit directions

21

22



3D Video Games                                
15: Rendering in 3D games

2025-05-29

Marco Tarini                                   
Università degli Studi di Milano 12

Continuous lighting environments
 In general terms, a lighting environment is a function: 

𝑓 ∶  Ω ⟶ ℝ

or   𝑓 ∶  Ω ⟶ ℝଷ if we want colored lights

 𝑓 𝑑 ෡ ≡ intensity/color of light coming form dir 𝑑 ෡ ∈  Ω

 Let’s see two ways to encode a continuous 𝑓 instead 
 Way 1: environment maps 

(just sample it, store it as a texture)
 Way 2: with basis functions 

(good for very smooth lighting envs)
 note: for now, we assume 𝑓 is the same in everywhere in the scene
 note: not easy to change 𝑓 over time (there are ways – see later)
 typically, a more realistic lighting env.

set of unit directions

Densely sampled
illumination environments

 A light intensity / color from each direction d෠

 Asset to store that: 
“environment map” texture

23
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Densely sampled
illumination environments

 Latitude/longitude format
(of a unit vector d෠ )

𝜃

180°-180°

90°

-90°

𝜑

𝜑

𝜃

d෠

𝑥

𝑦

𝑧

Densely sampled
illumination environments
 Aka “sky-map” texture

 because it doubles as a texture for the “sky boxes”
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Densely sampled
illumination environments

 Environment map: (asset)
a texture with a texel t for each direction d෠
 t stores the intensity/color of the light coming from direction d෠

 Q: how to determine 𝑢, 𝑣 position of t for a given d෠ ?
 i.e. how to parametrize (flatten) the unit sphere

 Different answers are possible…

latitude/longitude format mirror sphere 
format

cube-map format
(ad-hoc HW support!)

unit vector

Environment map (asset)

 A texture with a texel t for each direction d෠
 t stores the light coming from direction d෠

 useful to compute reflections on (curved) metallic objects
 often HDR (see later)

 Pro: realistic, complex, detailed, hi-freq, light env
 best for mirroring materials (such as metal, glass, water)

 Pro: can be captured from reality 
 see “mat-cap”

 Con: expensive to update
for dynamic scenes
 no prob, for static environments only

 Con: assume far away illuminants
 Not accurate for close illuminant
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Environment map (asset): uses

1. Reflection mapping
 metallic objects
 in short: material roughness → mipmap level!

Roughness 0
MIPMAP 0

Roughness 0.25
MIPMAP 1

Roughness 0.5
MIPMAP 2

Environment map (asset): uses

1. Reflection mapping
 metallic objects
 material roughness → mipmap level!

2. More generally, 
description of the lighting env
 for lighting computation

3. Coverage of the background
 e.g., as a texture covering the 

3D “skybox” / “skydome” mesh

29
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Skydome / skybox mesh

 A mesh encapsulating the entire scene 
 shows far away objects 
 note: for technical reason, the rendering doesn’t show really far

away objects – see “far plane clipping”
 technically, it shows objects at ∞ distance

 Shaped as a large cube/sphere surrounding the scene
 Centered in the same node as the camera

 so, it “follows the camera”: “players can never reach it”
 But rotated as the world frame 

 not as camera!
 (similar to: the transform of the microphone node)

 The environment map doubles as a color texture
over this mesh
 The sphere is painted with the background objects

(stars, sky, mountains on the horizon, etc)

Light environments:
using Basis Functions

 Lighting environment:
a continuous function  

 𝑓(𝑣ො) = amount of (rgb) light 
coming from direction 𝑣ො

 Store 𝑓 through basis functions

𝑓 𝑣ො ≅ 𝑎଴,଴ ȉ 𝑓଴,଴ 𝑣ො + 𝑎ଵ,ିଵ ȉ 𝑓ଵ,ିଵ 𝑣ො + 𝑎ଵ,଴ ȉ 𝑓ଵ,଴ 𝑣ො + 𝑎ଵ,ାଵ ȉ 𝑓ଵ,ାଵ 𝑣ො + ⋯

set of all unit vectors
(i.e., surface of the unit sphere)

or R3 if RGB
colored light

a few scalar values to be stored, in order to represent (an approx. of) 𝑓

fixed spherical “basis” functions (always the same ones)
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Spherical Harmonics (SpH):
a set of functions

𝑓௔,௕

𝑏
−3 −2 −1 0 +1 +2 +3

𝑎

0

1

2

3

+1

0

−1

𝑓ଶ,ାଶ

𝑓଴,଴

𝑓ଶ,ିଵ

Spherical Harmonics (SpH):
a set of functions (a different visualization)

𝑓௔,௕ −3 −2 −1 0 +1 +2 +3

𝑎
𝑓ଶ,ାଶ

𝑓଴,଴

𝑓ଶ,ିଵ

positive

negative
0

1

2

3

𝑏
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Spherical Harmonics (SpH):
a good choice for the basis functions

 Spherical Harmonics is a good set of basis functions for 
spherical functions

 Each function in the set has two indices 𝑎, 𝑏

 𝑓௔,௕ 𝑣ො    with   𝑎 ≥ 0 ,   −𝑎 ≤ 𝑏 ≤ +𝑎

 𝑓଴,଴ 𝑣ො = 1 a constant function
(so, scalar 𝑎଴,଴ represent the total amount of light)

 all other basis function sum up to 0 
(i.e., their integral over Ω is zero)

 they are designed to have useful mathematical properties 
(e.g., orthogonality – the integral of the product of any two is 0)

 all SpH functions are easy to evaluate, integrate, etc

so, they control the distribution,
not the quantity, of light

the degree

Light probes: 
Light environment stored with SpH

𝑓 𝑣ො ≅ + 0.5 ȉ 𝑓଴,଴ 𝑣ො   + 0.9 ȉ 𝑓ଵ,ିଵ 𝑣ො − 0.7 ȉ 𝑓ଵ,଴ 𝑣ො  + 0.3 ȉ 𝑓ଵ,ାଵ 𝑣ො + 0.1 ȉ 𝑓ଶ,ିଶ 𝑣ො + ⋯

𝑓 𝑣ො ≅      + 0.5 ȉ 𝑓଴,଴ 𝑣ො   + 0.9 ȉ 𝑓ଵ,ିଵ 𝑣ො − 0.7 ȉ 𝑓ଵ,଴ 𝑣ො  + 0.3 ȉ 𝑓ଵ,ାଵ 𝑣ො + 0.3 ȉ 𝑓ଶ,ିଶ 𝑣ො + ⋯

𝑓 is stored as    +0.5 , +0.9 , −0.7, +0.3,  0.1,  … 

(if it’s a colored Light Env, this is repeated for each R,G,B channel)

fixed, immutable, closed form functions that are easy to compute and manipulate

stored, i.e., the representation of                         as Spherical Harmonics

(grayscale) 
LIGHT ENV
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Light probes: 
Light environment stored with SpH

 Spherical Harmonics (SPH) in brief:
 store Illumination Env as a small number (4,9,16…) of scalar 

weights of as many fixed spherical basis functions.
 Pros:

 very compact representation
 it models continuous functions well: 

good for smooth lighting environments
 it allows for efficient computation of the Lighting equation
 it’s easy to interpolate between light envs!

 Cons:
 continuous functions ONLY

 not good for hi-freq details: for example, no hard lights
 not sudden variations (unless very many coefficient used)

 Good for soft light env

Light probes
(position-dependent lighting env)

 A light probe == a (precomputed) lighting env. 
to be used around a given 3D position of the scene

 Light Probe lighting: 
 preprocessing: disseminate the scene with light probes

 Store them as… low-res environment maps
 …or, with  SPH (the standard solution)

 at rendering time, for an object currently in pos (xyz), 
use an interpolation of near-by “light probes”
 note: two (or more) SPH function can be interpolated!
 easy: just interpolate the weights

40
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Light probes
(position-dependent lighting env)

Light probes
(position-dependent lighting env)
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Part II:
basics of GPU-based rendering

 Summary:
 a brief summary of rasterization-based rendering

(currently, almost universally adopted in 3D games)
(somehow threatened by novel “ray tracing” based 
approaches)

 the graphic pipeline and its programmable parts
 depth-maps
 double buffering
 deferred shading
 multi-pass techniques in general

(with exammples)

Rendering task for in 3D games:
overview

 Real time
 (20 or) 30 or 60 FPS

 Hardware (GPU) based
 pipelined, stream processing

 therefore: one class of algorithms (hardwired)
 rasterization based algorithm
 recent trend: switch to ray-tracing algorithms?

 Complexity:
 Linear with # of primitives
 Linear with # of pixels
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High-level view of mesh rendering

To render a mesh:
 load in GPU RAM:
 Geometry + Attributes
 Connectivity
 Textures
 Vertex + Fragment Shaders
 Global Material Parameters
 Rendering Settings

 issue the Draw-call

THE MESH ASSET

THE  MATERIAL ASSET

For this lecture, we need go lower level (a bit)

Graphic card

50

BUS

CPU

ALU

(central)

RAM

Disk

Video card

…Internal bus
(of video card)

V-RAMGPU
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Rendering of a mesh = 
rasterization of all its triangles

x

y z

𝐯0  = ( 𝑥0, 𝑦0, 𝑧0 ) 

𝐯1  = ( 𝑥1, 𝑦1, 𝑧1 ) 

𝐯2  = ( 𝑥2, 𝑦2, 𝑧2 ) 

GPU pipeline –
a simplified conceptual version

3D vertex
+

attributes

fragment
process

final
RGB
pixel

fragments
(“wannabe pixel”)

vertex
process

z x

v0
v1

v2

rasterizer

y

2D screen 
triangle

v0
v1

v2
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Rasterization based rendering: 
steps (remarks 1/2)
 Vertex processor:  (per vertex)

 Input: vertex data (position + initial attributes)
 Output: a final screen position, 

and other (refined) attributes

 Rasterizer: (per triangle)
 Input: a triplet of processed vertex (with attributes)
 Output: many “fragment”, one for each pixel covered by the triangle, 

each with interpolated attributes

 Fragment shader: (per fragment)
 Input: a fragment (with attributes)
 Output: a final rgb color (plus: an alpha value, plus: a depth value)

 Output combiner: (per fragment)
 Writes the rgb color on the screen buffer
 Overwrites, blends, or preserves the old value

Rasterization based rendering: 
steps (remarks 2/2)

 It’s a pipelined architecture:
every step works in parallel with all others
 E.g., while fragment are processed, the next triangle is 

being rasterized, and the next vertices are processed

 It’s a SIMD architecture:
Every step does the same processing on several 
inputs, producing several output, all in parallel,
 E.g., several fragments are processed at the same time

(each one independently from the others)
 E.g., same for vertices
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Rasterization-Based Rendering

3D 
vertices

per
fragment

final
pixels

"fragments"

per 
vertex

z x

v0
v1

v2

per 
triangle

y

2D triangle
on screen

v0
v1

v2

PROGRAMMABLE:
a user-defined

"Vertex Shader"
(or “vertex program”)

PROGRAMMABLE:
a user-defined

"Fragment Shader"
(or “pixel program”)

HARD-WIRED
(in the GPU)

Rasterization based rendering: 
typical tasks in each step 

 Per vertex:
 shape-blending  - interpolation of the current morphs

 skinning - transform from rest pose to current pose (blending matrices)

 projection - transform from object space to screen space

 Per triangle: (rasterizer)
 back-face culling  discard of back-facing triangles

 rasterization creation of fragments

 interpolation of per-vertex attributes  ←nota bene!

 Per fragment:
 texture mapping: accessing textures (including color, normal, alpha maps)

 lighting: from normal + lights + material to RGB

 alpha-kill: discard of (almost) fully transparent fragments

 fog effect: pixels distant from the camera are blended with a “fog” color

 Per fragment: (output combiner)
 depth-test: occluded pixels are removed (often anticipated for performance)

 alpha-blend: semi-transparent fragments are mixed with background

the 
Vertex 

Shader

the 
Fragment

Shader

hard 
wired

hard 
wired
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GPU pipeline – bottlenecks 
(remarks and terminology)

 Like in any pipeline, the process goes as slow as its slowest stage
 i.e., the «bottleneck» of the pipeline determines the total speed
 Any other stage is idle for part of the time (which is always a waste)

 stages before the bottleneck are «chocked»
(they wait for to next stage to be ready for their output)

 stages after the bottleneck are «starved» (they wait for the input from previous stage)
 Terminology about bottlenecks: (in CG) 

 “per vertex” stage is the bottleneck: the app is goemetry-limited
(«it cannot process geometry fast enough»)

 “per fragment” stage is the bottleneck: the app is fill-limited
(«it cannot fill the screen buffer with pixels fast enough»)

 Performaces (rendering FPS) of a game only impoves 
if computational load is lifted from the bottleneck phase
Examples:
 using all meshes at LOD 2 instead of LOD 0 does not help a fill-limited app
 reducing the resolution of the screen does not help a geometry-limited app
 using a simpler lighting model does not help a geometry-limited app

MORE COMMON 
CASE, FOR GAMES

In many game engines,
shaders are part of the “material asset”

To render a mesh:
 load (in GPU RAM):
 Geometry + Attributes
 Connectivity
 Textures
 Vertex + Fragment Shaders
 Global Material Parameters
 Rendering Settings

 issue the Draw-call

THE MESH ASSET

THE  MATERIAL ASSET
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Programming languages
for writing shaders

 High level:
 HLSL (High Level Shader Language, Direct3D, Microsoft)
 GLSL (OpenGL Shading Language)
 CG (C for Graphics, Nvidia)
 PSSL (PlayStation, Sony)
 MSL (Metal, Apple)

 Low level:
 ARB Shader Program 

(the “assembler” of GPU – now deprecated)

basics: Depth buffer 

per
fragment

per 
triangle

Scene
(geometry)

SCREEN BUFFER
per 

vertex

transform rasterize texturing,
lighting,…
+ depth test

DEPTH-BUFFER

+

s c r e e n

by-product
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Depth buffer 
(or Z-buffer) (or depth-map)

 Any rendering producing a screen-buffer …
 which is sent to the screen

 …also produces a depth-buffer
 as a by-product!
 not sent to the screen: it’s an “offline” buffer
 it’s used during the rendering to determine occlusions

and remove “hidden surfaces”
(i.e., make what is behind something else is not seen,
because it’s occluded by that something)

 see the Computer Graphics course for more details

 many rendering algorithms exploit the depth-buffer 
 for different uses
 for each pixel on the screen, we have not only its RGB value, but its depth 

value (a scalar from 0 – close to the camera, to 1 – far from the camera)

a 2D array
of RGB values

of some 
resolution

a 2D array
of depth values

(scalars in 0 to 1)
of the 

same resolution

basics: Double Buffering
 To render a scene, all meshes are rendered succession

 Filling the screen buffer

 Double-buffering is a basic technique to prevent any 
incomplete buffer to ever reach the screen
 E.g., a rendering where some of the meshes is still not rendered

 How it works:
 We have two RGB buffers: the front-buffer and the back-buffer
 The front buffer shows the last complete rendering 

and is the one the screen shows
 The back buffer is filled by the renderings, but it is not shown

(it’s yet another example of “off-screen buffer”)
 Screen Swap: When the back buffer is ready, the two buffer are 

swapped (instantaneously)
 Info about variants: look up what “V-sync” means in 3D games settings
 Observation: no need to double the depth-buffer
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SCREEN BUFFER A

basics: Double Buffering

B
SCREEN BUFFER B

WIP

Scene
(geometry)

basics: Double Buffering

SCREEN BUFFER A

A

SCREEN BUFFER B

Scene
(geometry)

WIP
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Off-screen buffers

 The rendering produces a 
screen buffer (2D array of RGB pixel)
that is sent to the screen
and is made visible to the player

 Any buffers that is used internally but and not sent to the 
screen is called an off-screen buffer
 Example: the depth buffer (2D array of depth values)
 Example: the back-screen buffer (double buffering techniques)

 Many rendering techniques are based on producing an off-
screen buffer then using it in another pass
 For example, to re-using it a texture in another rendering pass

Texture access: it’s in the per 
fragment process

per 
vertex

per 
triangle

v0
v1

v2

GEOMETRY
SCREEN 
BUFFER

TEXTURES

“Render Target”

per
fragment
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SCREEN 
BUFFERTEXTURE

basics: 
Render to Texture

per 
vertex

per 
triangle

v0
v1

v2

GEOMETRY

TEXTURES

“Render Target”

off-screen buffer

per
fragment

basics: Render to Texture
(multi-pass rendering)

per 
vertex

per 
triangle

v0
v1

v2

GEOMETRY TEXTURE

TEXTURES

per 
vertex

per 
triangle

v0
v1

v2

GEOMETRY
SCREEN 
BUFFER

“Render Target”

“Render Target”

other 
accesses

per
fragment

per
fragment

f i r s t  p a s s

s e c o n d  p a s s
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Multipass rendering techniques 
(a wide class of rendering techniques)

 1st pass: fill an internal 2D buffer
 an “off-screen” buffer
 the output of this rendering, i.e. its “render target”
 normally, the render target is the “screen buffer”

(the buffer shown to the screen), but not in this case
 2nd pass: fill the final screen buffer

 using the just-computed off-screen buffer as a 2D texture
 the 1st pass was… “rendering to texture”

 Note: good for GPU because…
 the off-screen buffer is either only write-only (1st pass) 

or read-only (2nd pass). Never both!
 the off-screen buffer is constructed and used in GPU RAM. 

No expensive swap of memory between CPU and GPU!

Example: metallic reflections
of dynamic scenes

per
fragment

per 
triangle

Scene
(geometry)

per 
vertex

transform rasterize texturing,
lighting

1s
t P

AS
S

img by Tze-Yiu Ho

Env-Map
(6 images)

per
fragment

per 
triangle

Scene
(geometry)

per 
vertex

transform rasterize texturing,
lighting
including
reflection
over 
metallic objects

2n
d 

PA
SS Final

Screen-Buffer
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Main rendering algorithms:
two classes of approaches

 Forward rendering
 Deferred shading

 Which approach to use?
 Both are employed by games
 Basilar choice! Implementation of all other rendering 

algorithms changes accordingly.

aka Deferred lighting  (actually, a variation)
aka Deferred rendering  (inappropriate?)

 Forward rendering

Main rendering algorithms:
two classes of approaches

per
fragment

per 
triangle

Scene
(geometry)

SCREEN BUFFER

per 
vertex

Render Target

transform rasterize texturing,
depth test,
etc,
and Lighting
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 Deferred shading

Main rendering algorithms:
two classes of approaches

aka Deferred lighting  (actually, a variation)
aka Deferred rendering  (inappropriate?)

SCREEN BUFFER
Lighting

texturing,
depth test
etc,
and Lighting

A single 
full-screen

quad

per
fragment

2n
d 

PA
SS

Scene
(geometry)

transform rasterize

(multiple) Render Targets (offscreen buffers)

“G-BUFFER”

normals diffuse colors depth 
buffer

per
fragment

per 
triangle

per 
vertex

1s
t P

AS
S

Deferred shading 
 Advantage: 

lighting is computed only actually visible pixels
 it’s a huge saving if large depth complexity (aka overdraw)

and/or lighting complexity – both common in 3D games

 Disadvantage: 
needs a separate buffer for every material parameter 
(or, sometimes, a material index)
 Normal buffer
 Depth buffer
 Base color buffer

 Limits the range of materials?
 Disadvantage: not good for semi-transparencies

81

82


