

Marco Tarini Università degli Studi di Milano

Types of discrete lights (a summary)				
	AND]]]]]]]		
	Ambient light	Directional light	Positional light	Spotlight
geometry	(nothing) (assumed at infinite)	Direction (versor) (assumed at infinite)	Position (point)	Position (point) & Direction (versor)
can be dimmed by	-	-	Falloff function	Falloff function Angular falloff function "Cookie" texture
can be blocked by	Ambient Occlusion either baked (per-vertex or per-texel) or dynamically computed (see SSAO later)	Cast shadows (usually) dynamically computed (see shadow-map technique later)		
how many	0-1	0-N	0-N	0-N
parameters	Color/Intensity (RGB value) Priority?			

Marco Tarini Università degli Studi di Milano

Environment map (asset) • A texture with a texel t for each direction \hat{d} • t stores the light coming from direction \hat{d} • useful to compute reflections on (curved) metallic objects • often HDR (see later) • Pro: realistic, complex, detailed, hi-freq, light env • best for mirroring materials (such as metal, glass, water) Pro: can be captured from reality see "mat-cap" • Con: expensive to update for dynamic scenes no prob, for static environments only • Con: assume far away illuminants Not accurate for close illuminant

