
Marco Tarini - 3D VideoGames 2019-02-28

Math background - Vectors - part 2 1

Point, vector, versor algebra

 Hint: before going on, make sure to know / understand
each operation in 3 different ways:

 intuitive / spatial: what does it do conceptually

 algebraic / code: how to compute the result
(1) starting from the coordinates of the operand(s)
(2) (for products only) also, starting from the angles

between the two operands, and their length

 syntactic: how to write them down
(1) on paper (math-notation)
(2) in a programming language (Unity C# lib, Unreal C++ lib, GLSL…)

 Refer to the CG course / the book

⚙
⚙

✎

Point and vector algebra 1/7
(summary)

 Difference:
point – point = vector

 Addition:
point + vector = point

Marco Tarini - 3D VideoGames 2019-02-28

Math background - Vectors - part 2 2

Point and vector algebra 2/7
(summary)

 Linear operations for vectors
 addition (between vectors)
 product with a scalar
 therefore: interpolation (between vectors)
 opposite (flip verse)
 therefore: difference (between vectors)

 Norm
 aka length / magnitude / Euclidean norm

 Normalization
 Input: a vector. Result: a versor

Point and vector algebra 3/7
(summary)

 Norm
 aka length / magnitude / Euclidean norm
 distance:

length of vector (a – b) = distance between a and b
 triangle inequality

 Normalization
 Input: a vector. Result: a versor
 scale the vector by 1.0 / its length

Marco Tarini - 3D VideoGames 2019-02-28

Math background - Vectors - part 2 3

Point and vector algebra 4/7
(summary)

 Dot product (or innter product)
 See Chapter 2.2

 Cross product (or vector product)
 See Chapter 2.3

(exercises in class)

Point and vector algebra 5/7
(summary)

 Dot product, good for:
 orthogonality test (if res == 0…)

(between vectors, and/or versors)
 sign: angle < or > 90

(between vectors, and/or versors)
 versor dot vector: project over versor
 find cosine of angle (between versors)
 get squared length (vector dot itself)
 similarity measure (between versors), in -1 +1

Marco Tarini - 3D VideoGames 2019-02-28

Math background - Vectors - part 2 4

Point and vector algebra 6/7
(summary)

 Cross product, good for:
 find orthogonal vectors
 construct orthonormal basis
 among 2D versors: find signed sin of angle
 find (double) area of 3D triangle
 find normal of 3D triangle
 collinearity test (if res = (0,0,0) …)

Point and vector algebra 7/7
(summary)

 Interpolate (linearly) beween pairs of
 points, vectors, versor (each with its own)
 Versors how-to: (crude version)

do the usual linear combination, then renormalize

 mix(point , point , scalar-weight) → point
 and likewise for other types
 weight == 0.5 → you are just averaging

 Terminlogy: (libraries, game engines…)
 interpolate = mix = blend = lerp

Marco Tarini - 3D VideoGames 2019-02-28

Math background - Vectors - part 2 5

Recap:
Vector base

 Axes: set of n
lin. ind. vectors
(x,y,z)

 Any vector v
can be expressed in
exactly 1 way as a linar
combination of these
vectors

 The weights are the
coord of v in that base

y

x
z

Recap: reference frame
(or space)

 n axes (vectors)
+
1 origin (point)

 Any vector v :
one linear comb of the
axes

 Any point p :
origine + one linear
comb. of axes

y

x
z

o

(vector base)

Marco Tarini - 3D VideoGames 2019-02-28

Math background - Vectors - part 2 6

Recap:
Handed-ness of a frame

 Orthonormal frames: axes are unit vectors
and reciprocally orthogonal.

 Such space can be right- or left-handed

zyx

Remember to use the same hand
to imagine a cross product

zyx

regardless!

Still no standards in 3D games

 Unity: left-handed: X-right, Y-up, Z-forward
 Unreal: left-handed: X-forward, Y-right, Z-up
 3DMax: right-handed, Z-up
 Blender: left-handed, Z-up
 most VR systems: right-handed, Y-up
 OpenGL: (clip space) right-handed, Y-up
 DirectX: (clip space) left-handed, Y-down

personal opinion:
most standard,

among
3D modellers too

Marco Tarini - 3D VideoGames 2019-02-28

Math background - Vectors - part 2 7

Pro-tip: try making your code
assumption free!

E.g.: to move a pos 2.5 units “to the right”:

Vector3 pos = new Vector3 (…);

pos.x = pos.x + 2.5; // maybe ??
pos.y = pos.y + 2.5; // hmm…??

Vector3 pos = new Vector3 (…);

pos += Vector3.right * 2.5;

Pro-tip: try making your code
assumption free!

E.g.: to move a pos 2.5 units “to the right”:

FVector pos = FVector(…);

pos.X += 2.5f; // maybe ??
pos.Y += 2.5f; // hmm…??

FVector pos (…);

pos += FVector::RightVector * 2.5f;

