
3D video gaming - Marco Tarini
Univ Milano 2019/2020

2019-03-21

Game Physics - 1 1

3D video games

Game Physics
Marco Tarini

Animation in games

 Assets!
 Fully controlled by

artist/designer
(dramatic effects!)

 Realism: depends on
artist’s skill

 Does not adapt to
context

 Repetition artefacts

 Physics engine
 Less control

 Physics-driven
realism

 Auto adaptation
to context

 Naturally repretition free

ProceduralNon procedural

but, a caveat on terminology:
in some context procedural means
“produced by a simple procedure”
as opposed to “physically simulated”

3D video gaming - Marco Tarini
Univ Milano 2019/2020

2019-03-21

Game Physics - 1 2

Physics simulation in videogames

 3D, or 2D
 “soft” real-time
 efficiency
 1 frame = 33 msec (at 30 FpS)
 physics = 5% - 30% max of computation time

 plausibility
 (not necessarily realism)

 robustness
 (should almost never “explode”)

Physics engine:
intro

 Game engine module
 executed at game run time

 An high-demanding computation
 on a very limited time budget!

 …but highly parallelizable
 “embarrassingly parallel”

==> good fit for hardware support
(just like the Rendering Engine)

3D video gaming - Marco Tarini
Univ Milano 2019/2020

2019-03-21

Game Physics - 1 3

Game engine tasks:
(Physics simulation!)

 Dynamics (Newtonian)
for object types such as:
 Rigid bodies
 Soft bodies

 “ragdolling”
 Free-form deformation bodies:

Specific solutions for
 Ropes
 Cloth
 Hair…

 Fluids
 Air (e.g. wind) etc

 Collision handling
 Collision detection
 Collision response

Hardware for
Physics engine

 Recently: PPU
 “Physical Processing Unit”
 HW unit specialized on physics

 More recently: GP-GPU
 “General Purpose Graphics Processing Unit”

 Use of the graphics card for generic tasks
(not related with 3D computer graphics)

 Ex.: Cuda (nVidia)

To exploit a strong parallelism,
you need a strongly parallel hardware!

3D video gaming - Marco Tarini
Univ Milano 2019/2020

2019-03-21

Game Physics - 1 4

Software: libraries / SDK

open source, free,
HW accelerated

2D! open source, free

open source, free

HW accelerated
(OpenCL)

HW accelerated
(CUDA)

by

PhysX

…

3D video gaming - Marco Tarini
Univ Milano 2019/2020

2019-03-21

Game Physics - 1 5

Physics in games:
cosmetics or gameplay?

 Just a graphic accessory?
(for realism!)
 e.g.:

 particle effects (w/o feedback)
 secondary animations
 Ragdolling

 Or a gameplay component?
 e.g. physics based puzzles
 Popular approach in 2D

(since always!)

Physics in games:
cosmetics or gameplay?

 Just a graphic accessory?
(for realism!)
 e.g.:

 particle effects (w/o feedback)
 secondary animations
 Ragdolling

 Or a gameplay component?
 e.g. physics based puzzles
 Rising trend in 3D

3D video gaming - Marco Tarini
Univ Milano 2019/2020

2019-03-21

Game Physics - 1 6

Physics engine:

Dynamics

 Physics simulation (Newtonian)
 Revision:

 object = mass
 Object state:
 position and derivative: velocity
 (and momentum)

 direction and angular velocity
 (and angular momentum)

 State change:
 forces => acceleration,

torque

Reminder:
Spatial location of an object
2D Physics

 Position:
(x,y)

 Orientation:
(α) – angle (scalar)

3D Physics

 Position:
(x,y,z)

 Orientation:
quaternion or

axis,angle or

axis x angle or

3x3 matrix or

Euler angles

3D video gaming - Marco Tarini
Univ Milano 2019/2020

2019-03-21

Game Physics - 1 7

Newtonian dynamics: summary

Actual
object
location

Rate of change
of 

(d / dt)

 “with mass”

(momentum)

What changes the
rate of change

(d2 / dt2)

 “with mass”

Position 𝑝

𝑝 = (x,y,z)

Velocity 𝑣

𝑣 = 𝑝̇

(|𝑣| = “speed”)

Momentum

𝑣 ȉ 𝑚

Acceleration

𝑎⃗ = 𝑣̇ = 𝑝̈

Force 𝑓

𝑓 = 𝑎⃗ ȉ 𝑚

Orientation

(e.g. quaternion)

Angular velocity 𝜔 Angular momentum

𝜔 ȉ 𝐼

𝐼 = moment of inertia
(for axis)
(“rotational inertia”)

Angular acc. α Torque τ

τ = 𝑎⃗ ȉ 𝐼

(“mechanic
momentum”)

Change the state
(no memory)

state (is kept! inertia!)
(changes, but only continuously)

A few constants per object

A few quantities associated to each object
 constants: they don’t (usually) change
 input of the physical simulation, not output

 Mass:
 resistance to change of velocity

 Moment of Inertia:
 resistance to change of angular velocity

 Barycenter:
 the center of mass

3D video gaming - Marco Tarini
Univ Milano 2019/2020

2019-03-21

Game Physics - 1 8

Mass

 resistance to change of velocity
 inertial mass

 also, incidentally:
ability to attract every other object
 gravitational mass
 happens to be the same

 what you measure with a scale
 Unity of measure:

kg, g…

Moment of inertia

 Resistance to change of angular velocity

 (an object rotates around its barycenter)

high

low

3D video gaming - Marco Tarini
Univ Milano 2019/2020

2019-03-21

Game Physics - 1 9

Moment of inertia

 Scalar moment of inertia
 Resistance to change of angular velocity
 Depends on the mass, and on its distribution

 the farthest one sub-mass from the axis, the > the resistance
 In 3D: its different for each axis of rotation

 It can be computed for any axis, thanks to…
 Moment of inertia as a 3x3 Matrix

 a matrix A used to extract the scalar, for any given axis
 given an axis a (a = unit vector), the moment of inertia is

aT A a
 matrix A can be computed once and for all for a rigid object

 how: that’s beyond this course
 in practice: use given formulas for common shapes
 or sum the contributions for each sub-mass

Barycenter

 Aka the center of mass
 (a position)

 In the discrete setting:
simply the weighted average of the positions
of the subparts composing an object
 (literally “weighted”: with their masses)

 Does not necessarily coincide with
the origin of the local frame of that object
 (but it can)

3D video gaming - Marco Tarini
Univ Milano 2019/2020

2019-03-21

Game Physics - 1 10

State of an object

current

current rates of change

constants

updated
by
physics

Point position

Rotation orientation

Vector velocity

Rotation angular_velocity

Scalar mass

Matrix moment_of_inertia

Point barycenter

Scalar drag

…

setup at initialization,
(rarely) changed
e.g. by scripts

Note: acceleration/forces/torques
are not part of the state

frictions;
see later

In

part of Transform component

the RigidBody component

Point position

Rotation orientation

Vector velocity

Rotation angular_velocity

Scalar mass

Matrix moment_of_inertia

Point barycenter

Scalar drag

…

Adding a “RigidBody” component
to a Game Object is to say:
“please let the Phys. engine take
care of this object”

3D video gaming - Marco Tarini
Univ Milano 2019/2020

2019-03-21

Game Physics - 1 11

In (using Unity terminology)

part of Transform component

the RigidBody component

Vector3 position

Quaternion rotation

Vector3 velocity

Quaternion angularVelocity

float mass

Vector3 centerOfMass

float drag

…

note: speed = velocity.magnitude

moment of inertia matrix

the Vector3 = a diagonal matrix D
by rotating it RTDR the final matrix

note: they are the components
of the global transformation!

the barycenter
(in object space)

Vector3 inertiaTensor
Quaternion inertiaTensorRotation

per second
(not per frame)

State of a point-particle

not used !

Point position

Rotation orientation

Vector velocity

Rotation angular_velocity

Scalar mass

Matrix moment_of_inertia

Point barycenter

Scalar drag

…

One trend in game phys engines
is to simulate point-particles only.

Much simpler!

E.g. no rotation needed!

We will see later how to still get
complex objects back (with “PBD”)

For now,
we focus on this simpler case.

3D video gaming - Marco Tarini
Univ Milano 2019/2020

2019-03-21

Game Physics - 1 12

Dynamics (Newtonian)

0

0

function(,...)

/

f p

a f m

v v a dt

p p v dt





  

  







  



describe the forces
given the particle positions (and more)

Dynamics (Newtonian)












dtvpp

dtavv

mfa

pfunf









0

0

/

,...)(forces

acceler.

velocity

positions

3D video gaming - Marco Tarini
Univ Milano 2019/2020

2019-03-21

Game Physics - 1 13

An (obvious) precisation

 = virtual time != real time
 e.g.:

 game paused  t costant.
 Fast forward, replay,

rallenty, reverse  change of speed/flow direction of t

occasionally,
gameplay exploit this difference in spectacular ways!

PoP – the sands of times serie (Ubisoft, 2003-…) Braid (Jonathan Blow, 2008)

Ct

Computing physics evolution

 Analytical solutions:

state = function(t)

Given force functions (and acc), find
the functions (pos, vel,…) in the
specified relations:

 Numerical solutions:

1. state(t = 0) init
2. state(t + 1)

evolve(statet)

3. goto 2













C

C

t

C

t

C

CC

CC

dttvptp

dttavtv

mtfta

tpfunztf

0

0

0

0

)()(

)()(

/)()(

),...)(()(









3D video gaming - Marco Tarini
Univ Milano 2019/2020

2019-03-21

Game Physics - 1 14

Analytical solutions

0

0

0

0

() function((),...)

() () /

() ()

() ()

C

C

C C

C C

t

C

t

C

f t p t

a t f t m

v t v a t dt

p t p v t dt





  

  








  



pos, acc, vel, forces:
in function of
current time

Ct

Analytical solutions

0

0

() function(()) / m

(0)

(0) p

p t p t

p v

p









with

that is, find position as function p of time s.t.

sometimes, of
other things too
(e.g. velocity).
Even harder!

3D video gaming - Marco Tarini
Univ Milano 2019/2020

2019-03-21

Game Physics - 1 15

Simple example:
analytical solution











y

x

v

v
v0













0

0
0p












8.9

0
mf



x

y
a is in this specific case:
one constant,
does not depend on pos

«ballistic shooting»
of a mass,
in 2D, ignoring friction...

Simple example:
analytical solution

Solving…



























































































2

00

0

0

2/8.98.90

0
)()(

8.98.9

0
)(

8.9

0
/)()(

8.9

0
)(

CCy

Cx
t

y

x
t

C

Cy

x
t

y

x
C

CC

C

ttv

tv
dt

tv

v
dttvptp

tv

v
dt

v

v
tv

mtfta

mtf

CC

C





















C

C

t

C

t

C

CC

CC

dttvptp

dttavtv

mtfta

tpfuntf

0

0

0

0

)()(

)()(

/)()(

),...)(()(









3D video gaming - Marco Tarini
Univ Milano 2019/2020

2019-03-21

Game Physics - 1 16

Simple example:
analytical solution

Final result:


















































22/8.9
)(

8.9
)(

8.9

0
)(

8.9

0
)(

CCy

Cx
C

Cy

x
C

C

C

ttv

tv
tp

tv

v
tv

ta

mtf







x

y

)(Ctp

Some numerical methods

 Forward Euler method
 (simple and direct)

 Leapfrog method
 Verlet method
 (position based dynamics)

3D video gaming - Marco Tarini
Univ Milano 2019/2020

2019-03-21

Game Physics - 1 17

Numerical method features

 How efficient / expensive
 must be at least soft real-time

 (if from time to time computation delayed to next frame, ok)
 How accurate

 must be at least plausible
 (if stays plausible, differences from reality are acceptable)

 How robust
 rare completely wrong results

 (and never crash)
 How generic

 Which phenomena / constraints / object types is it able to
recreate?

 requirements depend on the context (ex: gameplay)

Euler method integration

(1) Evaluate the force
(on each particle)
as a function of position (even of other
particles)

(2) acceleration
of each particle given by:
forces on it and its mass

(3) Update velocity with acceleration

(4) Update position with velocity

(state / variables) , (temp variables)

For each step:












dtvpp

dtavv

mfa

pfunf









0

0

/

,...)(

3D video gaming - Marco Tarini
Univ Milano 2019/2020

2019-03-21

Game Physics - 1 18

Euler methods

dtvpp

dtavv

mfa

pfunf

v

p




















/

...),(

...

...init
state

one
step dttt 

Simple example:
numerical solution




















4

2
0

y

x

v

v
v












0

0
0p












1

0
mf



x

y
constant
(in this specific case not
dependent from pos)

Same phenomena
of previous example

1dt
here, for instance,

3D video gaming - Marco Tarini
Univ Milano 2019/2020

2019-03-21

Game Physics - 1 19

Simple example:
numerical solution

dtvpp

dtavv

mfa

mf

























/

1

0

in
it

step: 0 1 2 3 4 5 6 7 …

pos: (0,0) (2,3) (4,5) (6,6) (8,6) (10,5) (12,3) (14,0) …

vel: (2,4) (2,3) (2,2) (2,1) (2,0) (2,-1) (2,-2) (2,-3) …

x

y

0

1

2
3 4

5

6

7

step step step step step step step step

Physics evolution computation

 Analytical solutions:  Numerical solutions:

x

y

0

1

2
3 4

5

6

7

x

y

)(C
y

x
tfunction

p

p










3D video gaming - Marco Tarini
Univ Milano 2019/2020

2019-03-21

Game Physics - 1 20

Physics evolution computation

 Analytical solutions:
 Super efficient!

 Close form solution

 Accurate
 Only simple systems
 formulas found

case by case
(often not existing!)

 NO
(but, for instance, useful to
allow the AI to make
predictions)

 Numerical solutions:
 Expensive (iterative)

 but interactive

 Integration errors
 Flexible
 Generic

 YES

Integration erros

 Depends on dt
 Small dt ==> more steps needed (for same virtual time)

==> more computationally expensive, but smaller error,
i.e. more accurate simulation
(smaller difference with exact analytical solution)

 dt = 1.0 sec / FPS of physics simulation
 (recall: not necessarily same rendering frame rate)

 How much does error decreasing when dt decreases?
 that «Order» of the simulation
 Euler is 1st order: the error can be as bad as O(dt1)

(but usually not that bad)

 Error keeps on accumulating with time
 (dependent also from 𝑡௧௢௧)

3D video gaming - Marco Tarini
Univ Milano 2019/2020

2019-03-21

Game Physics - 1 21

Forces

 In general, a function of current position(s)
 Gravity
 Resistance of solid materials

 but, this can be accounted for using constraints… see later

 Wind, electrical, magnetic, Archimede’s buoyancy,
mechanical springs, shock waves (explosions), etc …

 Fake / “Magic” control forces
 added for controlling the evolution, not physically justified

 Frictions
 oops! also depend on speed
 luckily, they can be accounted for using damping – see later

...

function(, ...)

...

f p


Forces: Springs

 Simplified model for elastic forces
 One spring connects two

particles Va and Vb
 Characterized by:

1. Rest length L
2. Elastic constant K

 Force:
counteracts stretching
and compression

Va

Vb

The force f exerted by spring on Va is:
• direction: versor from Vb to Va
• magnitude: K (L – dist(Va,Vb))

The force f exerted on Vb is –f

