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3D video games

Game Physics
Marco Tarini

Animation in games

 Assets!
 Fully controlled by

artist/designer
(dramatic effects!)

 Realism: depends on 
artist’s skill

 Does not adapt to 
context

 Repetition artefacts

 Physics engine
 Less control

 Physics-driven 
realism

 Auto adaptation
to context

 Naturally repretition free

ProceduralNon procedural

but, a caveat on terminology: 
in some context procedural means 
“produced by a simple procedure” 
as opposed to “physically simulated”



3D video gaming - Marco Tarini        
Univ Milano 2019/2020

2019-03-21

Game Physics - 1 2

Physics simulation in videogames

 3D, or 2D
 “soft” real-time
 efficiency
 1 frame = 33 msec (at 30 FpS)
 physics = 5% - 30% max of computation time

 plausibility
 (not necessarily realism)

 robustness
 (should almost never “explode”)

Physics engine:
intro

 Game engine module
 executed at game run time

 An high-demanding computation
 on a very limited time budget!

 …but highly parallelizable
 “embarrassingly parallel”

==> good fit for hardware support 
( just like the Rendering Engine)



3D video gaming - Marco Tarini        
Univ Milano 2019/2020

2019-03-21

Game Physics - 1 3

Game engine tasks:
(Physics simulation!)

 Dynamics (Newtonian)
for object types such as:
 Rigid bodies
 Soft bodies

 “ragdolling”
 Free-form deformation bodies:

Specific solutions for
 Ropes 
 Cloth
 Hair…

 Fluids
 Air (e.g. wind) etc

 Collision handling
 Collision detection
 Collision response

Hardware for 
Physics engine

 Recently: PPU
 “Physical Processing Unit”
 HW unit specialized on physics

 More recently: GP-GPU
 “General Purpose Graphics Processing Unit”

 Use of the graphics card for generic tasks
(not related with 3D computer graphics)

 Ex.: Cuda (nVidia)

To exploit a strong parallelism, 
you need a strongly parallel hardware!



3D video gaming - Marco Tarini        
Univ Milano 2019/2020

2019-03-21

Game Physics - 1 4

Software: libraries / SDK

open source, free,
HW accelerated

2D! open source, free

open source, free

HW accelerated
(OpenCL)

HW accelerated
(CUDA)

by

PhysX

…
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Physics in games: 
cosmetics or gameplay?

 Just a graphic accessory? 
(for realism!)
 e.g.:

 particle effects (w/o feedback)
 secondary animations
 Ragdolling

 Or a gameplay component?
 e.g. physics based puzzles
 Popular approach in 2D

(since always!)

Physics in games: 
cosmetics or gameplay?

 Just a graphic accessory? 
(for realism!)
 e.g.:

 particle effects (w/o feedback)
 secondary animations
 Ragdolling

 Or a gameplay component?
 e.g. physics based puzzles
 Rising trend in 3D
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Physics engine:

Dynamics

 Physics simulation (Newtonian)
 Revision:

 object = mass
 Object state:
 position and derivative: velocity
 (and momentum)

 direction and angular velocity 
 (and angular momentum)

 State change:
 forces => acceleration,

torque

Reminder:
Spatial location of an object
2D Physics

 Position: 
(x,y)

 Orientation: 
(α) – angle (scalar)

3D Physics

 Position: 
(x,y,z)

 Orientation: 
quaternion or

axis,angle or

axis x angle  or

3x3 matrix or

Euler angles
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Newtonian dynamics: summary

Actual
object
location

Rate of change
of 

(d / dt )

 “with mass”

(momentum)

What changes the
rate of change

(d2 / dt2)

 “with mass”

Position  𝑝

𝑝 = (x,y,z)

Velocity  𝑣

𝑣 = 𝑝̇

( |𝑣| = “speed”  )

Momentum

𝑣 ȉ 𝑚

Acceleration

𝑎⃗ = 𝑣̇ = 𝑝̈

Force 𝑓

𝑓 = 𝑎⃗ ȉ 𝑚

Orientation

(e.g. quaternion)

Angular velocity  𝜔 Angular momentum

𝜔 ȉ 𝐼

𝐼 = moment of inertia 
(for axis)
(“rotational inertia”)

Angular acc. α Torque τ

τ = 𝑎⃗ ȉ 𝐼

(“mechanic 
momentum”)

Change the state
(no memory)

state (is kept! inertia!)
(changes, but only continuously)

A few constants per object

A few quantities associated to each object
 constants: they don’t (usually) change
 input of the physical simulation, not output

 Mass:
 resistance to change of velocity 

 Moment of Inertia:
 resistance to change of angular velocity

 Barycenter:
 the center of mass
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Mass

 resistance to change of velocity 
 inertial mass

 also, incidentally: 
ability to attract every other object
 gravitational mass
 happens to be the same

 what you measure with a scale
 Unity of measure:

kg, g…

Moment of inertia

 Resistance to change of angular velocity

 (an object rotates around its barycenter)

high

low
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Moment of inertia

 Scalar moment of inertia
 Resistance to change of angular velocity
 Depends on the mass, and on its distribution

 the farthest one sub-mass from the axis, the > the resistance
 In 3D: its different for each axis of rotation

 It can be computed for any axis, thanks to…
 Moment of inertia as a 3x3 Matrix

 a matrix A used to extract the scalar, for any given axis
 given an axis a (a = unit vector), the moment of inertia is

aT A a
 matrix A can be computed once and for all for a rigid object

 how: that’s beyond this course
 in practice: use given formulas for common shapes
 or sum the contributions for each sub-mass

Barycenter

 Aka the center of mass
 (a position)

 In the discrete setting:
simply the weighted average of the positions
of the subparts composing an object
 (literally “weighted”: with their masses)

 Does not necessarily coincide with 
the origin of the local frame of that object
 (but it can)
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State of an object

current

current rates of change

constants

updated
by
physics 

Point position

Rotation orientation

Vector velocity

Rotation angular_velocity

Scalar mass

Matrix moment_of_inertia

Point barycenter

Scalar drag 

…

setup at initialization,
(rarely) changed
e.g. by scripts

Note: acceleration/forces/torques 
are not part of the state

frictions; 
see later

In

part of Transform component

the RigidBody component

Point position

Rotation orientation

Vector velocity

Rotation angular_velocity

Scalar mass

Matrix moment_of_inertia

Point barycenter

Scalar drag 

…

Adding a “RigidBody” component 
to a Game Object is to say:
“please let the Phys. engine take 
care of this object”
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In                (using Unity terminology)

part of Transform component

the RigidBody component

Vector3 position

Quaternion rotation

Vector3 velocity

Quaternion angularVelocity

float mass

Vector3 centerOfMass

float drag 

…

note: speed = velocity.magnitude

moment of inertia matrix

the Vector3 = a diagonal matrix D 
by rotating it RTDR the final matrix

note: they are the components
of the global transformation!

the barycenter 
(in object space)

Vector3 inertiaTensor
Quaternion inertiaTensorRotation

per second
(not per frame)

State of a point-particle

not used !

Point position

Rotation orientation

Vector velocity

Rotation angular_velocity

Scalar mass

Matrix moment_of_inertia

Point barycenter

Scalar drag 

…

One trend in game phys engines 
is to simulate point-particles only.

Much simpler!

E.g. no rotation needed!

We will see later how to still get 
complex objects back (with “PBD”)

For now, 
we focus on this simpler case.
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Dynamics (Newtonian)
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describe the forces
given the particle positions (and more)

Dynamics (Newtonian)
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An (obvious) precisation

 =  virtual time != real time
 e.g.: 

 game paused  t costant. 
 Fast forward, replay, 

rallenty, reverse  change of speed/flow direction of t

occasionally, 
gameplay exploit this difference in spectacular ways!

PoP – the sands of times serie  (Ubisoft, 2003-…) Braid (Jonathan Blow, 2008)

Ct

Computing physics evolution

 Analytical solutions:

state = function( t )

Given force functions (and acc), find 
the functions (pos, vel,…) in the 
specified relations:

 Numerical solutions:

1. state( t = 0) init
2. state( t + 1)

evolve( statet )

3. goto 2
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Analytical solutions

0
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pos, acc, vel, forces:
in function of
current time 

Ct

Analytical solutions
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


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
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with

that is, find position as function p of time s.t.

sometimes, of 
other things too
(e.g. velocity). 
Even harder!



3D video gaming - Marco Tarini        
Univ Milano 2019/2020

2019-03-21

Game Physics - 1 15

Simple example: 
analytical solution
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a is in this specific case:
one constant, 
does not depend on pos

«ballistic shooting»
of a mass,
in 2D, ignoring friction...

Simple example: 
analytical solution
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Simple example: 
analytical solution

Final result:
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Some numerical methods

 Forward Euler method
 (simple and direct)

 Leapfrog method
 Verlet method
 (position based dynamics)
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Numerical method features

 How efficient / expensive
 must be at least soft real-time

 (if from time to time computation delayed to next frame, ok)
 How accurate

 must be at least plausible
 (if stays plausible, differences from reality are acceptable)

 How robust
 rare completely wrong results

 (and never crash)
 How generic

 Which phenomena / constraints / object types is it able to 
recreate?

 requirements depend on the context (ex: gameplay)

Euler method integration

(1) Evaluate the force
(on each particle)
as a function of position (even of other 
particles)

(2) acceleration
of each particle given by:
forces on it and its mass

(3) Update velocity with acceleration

(4) Update position with velocity

(state / variables) , (temp variables)

For each step:


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Euler methods

dtvpp

dtavv
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Simple example: 
numerical solution
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y
constant 
(in this specific case not
dependent from pos)

Same phenomena
of previous example

1dt
here, for instance,
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Simple example: 
numerical solution

dtvpp

dtavv
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pos: (0,0) (2,3) (4,5) (6,6) (8,6) (10,5) (12,3) (14,0) …

vel: (2,4) (2,3) (2,2) (2,1) (2,0) (2,-1) (2,-2) (2,-3) …
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Physics evolution computation

 Analytical solutions:  Numerical solutions:
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Physics evolution computation

 Analytical solutions:
 Super efficient!

 Close form solution

 Accurate
 Only simple systems
 formulas found 

case by case
(often not existing!)

 NO
(but, for instance, useful to 
allow the AI to make 
predictions)

 Numerical solutions:
 Expensive (iterative)

 but interactive

 Integration errors
 Flexible
 Generic

 YES

Integration erros

 Depends on dt
 Small dt ==> more steps needed (for same virtual time)

==> more computationally expensive, but smaller error, 
i.e. more accurate simulation
(smaller difference with exact analytical solution) 

 dt = 1.0 sec / FPS of physics simulation
 (recall: not necessarily same rendering frame rate)

 How much does error decreasing when dt decreases?
 that «Order» of the simulation
 Euler is 1st order: the error can be as bad as O( dt1 )

(but usually not that bad)

 Error keeps on accumulating with time
 (dependent also from 𝑡௧௢௧ )
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Forces

 In general, a function of current position(s)
 Gravity
 Resistance of solid materials

 but, this can be accounted for using constraints… see later

 Wind, electrical, magnetic, Archimede’s buoyancy, 
mechanical springs, shock waves (explosions), etc … 

 Fake / “Magic” control forces 
 added for controlling the evolution, not physically justified

 Frictions
 oops! also depend on speed
 luckily, they can be accounted for using damping – see later

...

function( , ...)

...

f p


Forces: Springs

 Simplified model for elastic forces
 One spring connects two 

particles Va and Vb
 Characterized by:

1. Rest length L
2. Elastic constant K

 Force:
counteracts stretching
and compression

Va

Vb

The force f exerted by spring on Va is:
• direction: versor from Vb to Va
• magnitude:    K ( L – dist(Va,Vb) )

The force f exerted on Vb is –f


