
3D video gaming - Marco Tarini
Univ Milano 2019/2020

2019-03-25

Game Physics - 2 1

Forces: Springs

 Simplified model for elastic forces
 One spring connects two

particles Va and Vb
 Characterized by:

1. Rest length L
2. Elastic constant K

 Force:
counteracts stretching
and compression

Va

Vb

ba

ba
ba vv

vv
LvvKf





)(

)(


Forces: Springs

 Useful for deformable objects,
for instance cloth, ropes, hairs…

Extra springs,
for resistance

to bending

3D video gaming - Marco Tarini
Univ Milano 2019/2020

2019-03-25

Game Physics - 2 2

Forces: Springs

 Useful for deformable objects,
for instance cloth, ropes, hairs…

img by msqrt (pauli kemppinen)

What Springs can model

 Elastic deformable objects
 Elastic = go back to original shape
 Easily modelled as compositions of (ideal) springs.

 Plastic deformable objects?
 Plastic = assume deformed pose permanently
 Dynamically change rest-length L in response to large

compression/stretching, in certain conditions (not easy)
 Rigid objects?

 Increase spring stiffness? k → ∞
 Makes sense, physically, but…
 Large k⇒ large F ⇒ instability ⇒ unfeasibly small dt needed
 How, then? see later

3D video gaming - Marco Tarini
Univ Milano 2019/2020

2019-03-25

Game Physics - 2 3

Forces: control

 Example:
 The player presses the forward button:

A forward force is applied to his/her avatar
 (no justification)
 (“Don’t ask questions, physics engine”)

 According to some:
it’s better when that’s not done
 Only physically justified forces

(usually hard to obtain)
 plausibility VS realism

Continuity of pos and vel

 In theory, in a physics system pos and vel can
changed only continuously

 In practice, sometimes is useful to insert
discontinuous changes in both:
 in positions: “teleportation”
 in velocity: “impulses”

 model very big forces exerted in a very small time interval
 ex.: impacts, v. collision handling

 (those are not necessary variations justified by forces)

3D video gaming - Marco Tarini
Univ Milano 2019/2020

2019-03-25

Game Physics - 2 4

Impulse

 Forces (continuous)
 Continuous application
 every frame

 
...

/

...

dtmfvv 


 Impulses
 Infinitesimal time
 una tantum

 
...

/

...

mivv




direct (discontinuous!)
change of state (velocity)

they models very short and intense
forces (ex: impacts)

Impulses VS Forces

 Force :
 determines acceleration
 acc determines a change (continuous!) of vel
 physically correct

 Impulse :
 (discontinuous!) change of vel

 ex: implulse caused by the rebound of a tennis ball against a tennis racket
 a force with:

 application time dt approaching zero
 but magnitude approaching infinity

 physically correct?
 approximation.

model phenomena that happen at dt much smaller than simulated ones
 (what does truly happen when the ball is hit by the racket?)

 very strong forces in very short time (but not instantaneous)

3D video gaming - Marco Tarini
Univ Milano 2019/2020

2019-03-25

Game Physics - 2 5

Physics displacements
VS kinematic

Physics
displacements

...

...

dtvpp 


“Kinematic”
displacements

“teleportation”

...

...

dppp 

direct (and discontinuous!) change of state (pos)

Euler pseudo code

Vec3 position = …
Vec3 velocity = …

void initState(){
position = …
velocity = …

}

void physicStep(float dt)
{

position += velocity * dt;
Vec3 acceleration = compute_force(position) / mass;
velocity += acceleration * dt;

}

void main(){
initState();
while (1) do physicStep(1.0 / FPS);

}

3D video gaming - Marco Tarini
Univ Milano 2019/2020

2019-03-25

Game Physics - 2 6

Numerical methods:
integration steps

dt : delta of virtual time from last step
 the “temporal resolution” of the simulation!

 if small: less efficiency
 more steps for simulating same amount of virtual time

 if big: less accuracy
 especially with strong forces and/or high velocities

 Common values: 1 sec / 60 … 1 sec / 30
 note: not necessarily the same refresh rate of rendering task

order of the simulation:
how much the error is increasing when dt increase

Euler Method: limitations

 bad ratio efficiency / accuracy
 error accumulated over time = linear in dt
 i.e. it’s a “first order” method

 No reversibility
 Even plausibility could be compromised

 No guarantee on energy conservation !
 what happens energy might even increase
 e.g.: divergent oscillationts!
 patch: damping of velocity (at each step)

float damp = 1.0 – SMALL_CONST ;
velocity *= damp;

 Continuous loss of kinetic energy
 Official excuse: “friction with… everything (air included)”

3D video gaming - Marco Tarini
Univ Milano 2019/2020

2019-03-25

Game Physics - 2 7

Damping

 In reality, the energy of a system decreases
due to dissipations (attrition)

 We can add this in our system as a force:
attrition force
 a force in the opposite direction of current velocity

(or it’s component along a surface)
 it’s magnitude increases with the speed

(magnitude of velocity)
 Note: it is a force which depends on velocity,

not positions.
 Huge simplification: model attrition with damping

 simply, reduce velocity vector by a fixed amount
 i.e. multiply it by (1 – epsilon) every second
 epsilon = “drag” (1 – epsilion) = “damp”

Damping

 An artificial (constant) reduction of kinetic energy
 Why do we use it?

 real reason: robustness. We avoids energy increments due
to numerical. errors. E.g. avoids divergent oscillations

 reason two: easy way to include friction.
But crude! Attrition with everything: air, soil.
Exaggerates friction,
especially when no contact, i.e. attrition with air

 Pactical effects of damp:
 low values: hardly noticeable (except in the long run)
 high values: like moving in molasses

everything quickly grinds to an halt
 very high values: basically, no inertia

(useful to converge to minimal energy state)

3D video gaming - Marco Tarini
Univ Milano 2019/2020

2019-03-25

Game Physics - 2 8

Damping Sub problem:

 I want to decrease velocity of a
percentage for every second of virtual time
 e.g.: if 2% then Drag = 0.02 (i.e. Damp = 0.98)

 how long do I have to multiply vel every dt ?

 for enough small DRAG ad dt, well approximaged by

dtDragvv)1(


)1(Dragdtvv 


1/FPS sec

Velocity «Damping»
(or «Drag», resistance e.g. air resistance)

Vec3 position = …
Vec3 velocity = …

void initState(){
position = …
velocity = …

}

void physicStep(float dt)
{

Vec3 acceleration = force(positions) / mass;
velocity += acceleration * dt;

position += velocity * dt;
}

void main(){
initState();
while (1) do physicStep(1.0 / FPS);

}

velocity *= (1.0 – DRAG * dt);

