
3D video gaming - Marco Tarini
Univ Milano 2019/2020

2019-03-25

Game Physics - 2 1

Forces: Springs

 Simplified model for elastic forces
 One spring connects two

particles Va and Vb
 Characterized by:

1. Rest length L
2. Elastic constant K

 Force:
counteracts stretching
and compression

Va

Vb

ba

ba
ba vv

vv
LvvKf

)(

)(

Forces: Springs

 Useful for deformable objects,
for instance cloth, ropes, hairs…

Extra springs,
for resistance

to bending

3D video gaming - Marco Tarini
Univ Milano 2019/2020

2019-03-25

Game Physics - 2 2

Forces: Springs

 Useful for deformable objects,
for instance cloth, ropes, hairs…

img by msqrt (pauli kemppinen)

What Springs can model

 Elastic deformable objects
 Elastic = go back to original shape
 Easily modelled as compositions of (ideal) springs.

 Plastic deformable objects?
 Plastic = assume deformed pose permanently
 Dynamically change rest-length L in response to large

compression/stretching, in certain conditions (not easy)
 Rigid objects?

 Increase spring stiffness? k → ∞
 Makes sense, physically, but…
 Large k⇒ large F ⇒ instability ⇒ unfeasibly small dt needed
 How, then? see later

3D video gaming - Marco Tarini
Univ Milano 2019/2020

2019-03-25

Game Physics - 2 3

Forces: control

 Example:
 The player presses the forward button:

A forward force is applied to his/her avatar
 (no justification)
 (“Don’t ask questions, physics engine”)

 According to some:
it’s better when that’s not done
 Only physically justified forces

(usually hard to obtain)
 plausibility VS realism

Continuity of pos and vel

 In theory, in a physics system pos and vel can
changed only continuously

 In practice, sometimes is useful to insert
discontinuous changes in both:
 in positions: “teleportation”
 in velocity: “impulses”

 model very big forces exerted in a very small time interval
 ex.: impacts, v. collision handling

 (those are not necessary variations justified by forces)

3D video gaming - Marco Tarini
Univ Milano 2019/2020

2019-03-25

Game Physics - 2 4

Impulse

 Forces (continuous)
 Continuous application
 every frame

...

/

...

dtmfvv

 Impulses
 Infinitesimal time
 una tantum

...

/

...

mivv

direct (discontinuous!)
change of state (velocity)

they models very short and intense
forces (ex: impacts)

Impulses VS Forces

 Force :
 determines acceleration
 acc determines a change (continuous!) of vel
 physically correct

 Impulse :
 (discontinuous!) change of vel

 ex: implulse caused by the rebound of a tennis ball against a tennis racket
 a force with:

 application time dt approaching zero
 but magnitude approaching infinity

 physically correct?
 approximation.

model phenomena that happen at dt much smaller than simulated ones
 (what does truly happen when the ball is hit by the racket?)

 very strong forces in very short time (but not instantaneous)

3D video gaming - Marco Tarini
Univ Milano 2019/2020

2019-03-25

Game Physics - 2 5

Physics displacements
VS kinematic

Physics
displacements

...

...

dtvpp

“Kinematic”
displacements

“teleportation”

...

...

dppp

direct (and discontinuous!) change of state (pos)

Euler pseudo code

Vec3 position = …
Vec3 velocity = …

void initState(){
position = …
velocity = …

}

void physicStep(float dt)
{

position += velocity * dt;
Vec3 acceleration = compute_force(position) / mass;
velocity += acceleration * dt;

}

void main(){
initState();
while (1) do physicStep(1.0 / FPS);

}

3D video gaming - Marco Tarini
Univ Milano 2019/2020

2019-03-25

Game Physics - 2 6

Numerical methods:
integration steps

dt : delta of virtual time from last step
 the “temporal resolution” of the simulation!

 if small: less efficiency
 more steps for simulating same amount of virtual time

 if big: less accuracy
 especially with strong forces and/or high velocities

 Common values: 1 sec / 60 … 1 sec / 30
 note: not necessarily the same refresh rate of rendering task

order of the simulation:
how much the error is increasing when dt increase

Euler Method: limitations

 bad ratio efficiency / accuracy
 error accumulated over time = linear in dt
 i.e. it’s a “first order” method

 No reversibility
 Even plausibility could be compromised

 No guarantee on energy conservation !
 what happens energy might even increase
 e.g.: divergent oscillationts!
 patch: damping of velocity (at each step)

float damp = 1.0 – SMALL_CONST ;
velocity *= damp;

 Continuous loss of kinetic energy
 Official excuse: “friction with… everything (air included)”

3D video gaming - Marco Tarini
Univ Milano 2019/2020

2019-03-25

Game Physics - 2 7

Damping

 In reality, the energy of a system decreases
due to dissipations (attrition)

 We can add this in our system as a force:
attrition force
 a force in the opposite direction of current velocity

(or it’s component along a surface)
 it’s magnitude increases with the speed

(magnitude of velocity)
 Note: it is a force which depends on velocity,

not positions.
 Huge simplification: model attrition with damping

 simply, reduce velocity vector by a fixed amount
 i.e. multiply it by (1 – epsilon) every second
 epsilon = “drag” (1 – epsilion) = “damp”

Damping

 An artificial (constant) reduction of kinetic energy
 Why do we use it?

 real reason: robustness. We avoids energy increments due
to numerical. errors. E.g. avoids divergent oscillations

 reason two: easy way to include friction.
But crude! Attrition with everything: air, soil.
Exaggerates friction,
especially when no contact, i.e. attrition with air

 Pactical effects of damp:
 low values: hardly noticeable (except in the long run)
 high values: like moving in molasses

everything quickly grinds to an halt
 very high values: basically, no inertia

(useful to converge to minimal energy state)

3D video gaming - Marco Tarini
Univ Milano 2019/2020

2019-03-25

Game Physics - 2 8

Damping Sub problem:

 I want to decrease velocity of a
percentage for every second of virtual time
 e.g.: if 2% then Drag = 0.02 (i.e. Damp = 0.98)

 how long do I have to multiply vel every dt ?

 for enough small DRAG ad dt, well approximaged by

dtDragvv)1(

)1(Dragdtvv

1/FPS sec

Velocity «Damping»
(or «Drag», resistance e.g. air resistance)

Vec3 position = …
Vec3 velocity = …

void initState(){
position = …
velocity = …

}

void physicStep(float dt)
{

Vec3 acceleration = force(positions) / mass;
velocity += acceleration * dt;

position += velocity * dt;
}

void main(){
initState();
while (1) do physicStep(1.0 / FPS);

}

velocity *= (1.0 – DRAG * dt);

