
3D video gaming - Marco Tarini
Univ Milano 2019/2020

2019-03-28

Game Physics - 3 1

Leapfrog Integration

Leapfrog Integration

t (in dt)0.0 0.5 1.0 1.5 2.0 2.5

Pos Vel Pos Vel Pos Vel

3D video gaming - Marco Tarini
Univ Milano 2019/2020

2019-03-28

Game Physics - 3 2

Leapfrog Integration
first step

t (in dt)0.0 0.5 1.0 1.5 2.0 2.5

Pos0

Vel0

Vel

2/

...),(

05.0

0

dtavv

pfa






Leapfrog Integration

t (in dt)0.0 0.5 1.0 1.5 2.0 2.5

Pos Vel Pos Vel Vel

dtvpp  5.001



dtavv

pfa




5.05.1

1 ...),(


dtvpp  5.112



dtavv

pfa




5.15.2

2 ...),(


Pos

dtvpp  5.223



Pos

3D video gaming - Marco Tarini
Univ Milano 2019/2020

2019-03-28

Game Physics - 3 3

Leapfrog method: advantages

 Better accuracy for same dt
 (better asymptotic behavior)
 “second order instead of first”
 (residual error dt3 instead of dt2)

 Same cost as Euler
 bonus: fully reversible! 

Verlet method
(“position based dynamics”)

 Idea: remove velocity from state
 Current velocity: implicit
 Computed by:

delta between
 Current pos
 Last pos (which is recorded)

dtppv oldnow /)(


nowp

oldp

3D video gaming - Marco Tarini
Univ Milano 2019/2020

2019-03-28

Game Physics - 3 4

Verlet method
(position based dynamics)

one
step

expanding this…

init
state

dtvpp

dtavv

dtppv

mfa

pfunf

p

p

nownext

oldnow

now

old

now




















/)(

/

)(

...

...

Verlet method
(position based dynamics)

nextnow

nowold

pp

pp




init
state

one
step

...

...




old

now

p

p

22

/

)(

dtappp

mfa

pfunf

oldnownext

now













3D video gaming - Marco Tarini
Univ Milano 2019/2020

2019-03-28

Game Physics - 3 5

The real advantage of
position based

nextnow

nowold

pp

pp




init
state

one
step

...

...




old

now

p

p

22

/

)(

dtappp

mfa

pfunf

oldnownext

now













Enforce constraints on)(nextp

Verlet: characteristics

 Implicit velocity!
 Good efficiency / accuracy ratio
 accumulated error: order of dt2

 Extra bonus: reversibility of the system
 (it’s possible to travel the evolution backward in t and

go back to the correct initial state)
 (being careful with implementation details)

 Principal advantage: flexibility
 possible to impose constraints directly on positions!

 and get “automatic” velocity adjustment
(not the correct ones, but plausible ones)

3D video gaming - Marco Tarini
Univ Milano 2019/2020

2019-03-28

Game Physics - 3 6

Verlet: caveats

 it assumes dt (time-step) to be constant
 if it varies: corrections needed! (which ones?)

 how to act on velocity
(which is implicit) ?
 e.g., for: damping
 e.g., for: impulses
 A: change instead

 how to change position without
impacting velocity?
 A: change both and

oldp

nowp oldp

dt updates in Verlet
(if they are not constant)
Problem:

if dt now changes to a new dt'
then, all pold must be updated to some p'old

Find p'old :

'/)'(

/)(

dtppv

dtppv

oldnow

oldnow







dtdtpdtdtdtpp oldnowold /'/)'(' 

current velocity
and position
must not change

3D video gaming - Marco Tarini
Univ Milano 2019/2020

2019-03-28

Game Physics - 3 7

Damp (drag) in Verlet

Problem: we want to damp velocities
i.e. mult them
by updating pold to some p'old

Find p'old :

dtppcvv

dtppv

oldnowDAMP

oldnow

/)'('

/)(







DAMPcvv 


'

DAMPoldDAMPnowold cpcpp )1('

e.g. 0.99

Positional constraints

 Generic and expressive
 Lots of possible phenomena
 for instance: “no interpenetration”

 Easily defined
 Easy to impose

 Imposing a constraint (positional) =
 = find the positions similar to the current ones satisfying it
 = project the current state in the allowed state space

 Verlet benefit:
 update velocity: automatic !
 without using forces / impulses

 (the ones that in reality impose the constraints)
  approximation, but plausible results!

3D video gaming - Marco Tarini
Univ Milano 2019/2020

2019-03-28

Game Physics - 3 8

Example of
positional constraint

«Particles must stay
within [0 – 100] x [0 – 100] »

for(int i=0; i<NUM_PARTICLES; i++)
{

p[i].x = clamp(p[i].x, 0, 100);
p[i].y = clamp(p[i].y, 0, 100);

}

a

b

Imposing constraint: simple clamp !
ex:

1000

100

Imposing constraints like this is a first collision response.
But: for bounces (impact impulses) must be added.

Ex: Equidistance constraints

«Particles a and b must be at distance d »

dpp ba  ||

bp

ap

d

3D video gaming - Marco Tarini
Univ Milano 2019/2020

2019-03-28

Game Physics - 3 9

d

Impose equidistance constraints

dpp ba  ||

dpp ba  ||

if

if

ap

bp

d

bp
ap

Equidistance constraints: pseudo
code
Vector3 pa, pb; // curr positions of a,b
float d; // distance (to enforce)

Vector3 v = pa – pb;
float currDist = v.length;

v /= currDist; // normalization of v

float delta = currDist – d ;

pa += (0.5 * delta) * v;
pb -= (0.5 * delta) * v;

assuming equal mass, each particle moves half the way
(see later for the general case)

3D video gaming - Marco Tarini
Univ Milano 2019/2020

2019-03-28

Game Physics - 3 10

Combinations of
equidistance constraints
 For obtaining:
 Rigid bodies
 note:

 only positions / vel / acc!
 no: angles,

angular vel
angular acc

A box?
(rigid object)
configuration of:
• 4 particles
• 6 equidistance constraints

Combinations of
equidistance constraints
 For obtaining:
 Rigid bodies
 Ragdolls
 Cloth
 Non-elastic ropes
 …

Spring-like behaviour, but
for rigid bodies!

3D video gaming - Marco Tarini
Univ Milano 2019/2020

2019-03-28

Game Physics - 3 11

Equidistance constraints
VS springs

 Aren’t they similar?
 they both mean:

these two particles “want to be” at this distance
 But:

 spring:
 applied during

force evaluation step
 affecting forces,

therefore accelerations
 models a deformable spring

between the two particles
 of a given length

 sometimes called
a “SOFT” constraint

 equidistance constraint:
 applied during

constraint enforcement
 directly affecting

positions
 models a rigid rod between

the two particles
 of a given length

 sometimes called
an “HARD” constraint

 They can be combined in one object!

More examples of
positional constraints

 Preserving areas / volumes: «Volume is 𝑣஼ »
 How to impose it:
1. Estimation of current total volume 𝑣

2. uniform scaling of the object of 𝑣஼ /𝑣
య

 Fixed positions: «particle 𝑎 stays in 𝑝௔ »
 particles «pinned in position»
 trivial, but useful!

 Angle constraints
 ex, on joints: «elbows cannot bend backward»

 Coplanarity / colinearity
 Non interpenetration

 (part of collision handling – see later)

3D video gaming - Marco Tarini
Univ Milano 2019/2020

2019-03-28

Game Physics - 3 12

Enforcing sets of constraints

 Many constraints to impose:
solve one  break another one!

 Simultaneous enforement: computationally expensive

 Practical solution: enforce them in cascade
(a-la Gauss-Seidel):

Repeat until convergence (= max error below threshold)

…but at most for N times! (remember: soft real time)

Constr.
1

Constr.
2

Constr.
N

...

Enforcing sets of constraints

 Note:
 The whole loop for imposing the constraints happen in just

one physics step!
 Convergence:

 if constraints are not contradictory
 if convergence not reached (or solution doesn’t exist):

never mind, next frames will fix it (fairly robust)
 needed iterations (typically): 1 ~ 10 (efficient!).
 Optimization (to decrease number of needed iterations):

solve the most unsatisfied constraints first
 Problem: it’s a sequential approach! 

 but parallelized versions (similar to Jacobi)
have a worse convergence in practice

3D video gaming - Marco Tarini
Univ Milano 2019/2020

2019-03-28

Game Physics - 3 13

Enforcing a positional constraint:
the general case.

Check constraint (on position)
 It holds? Nothing to do
 It doesn’t?
 All positions must be changed so that it does
 Conceptual problem:

infinite ways to achieve this. Which one to pick?
 Answer:

minimize the sum of all squared displacements
(with respect to current position)
weighted by particle masses

 Find it by analytically solving simple problems
(“analytically” = “on paper”)

Enforcing a positional constraint
the general case: formally

To enforce a constraint 𝒞 on particles a , b , c,…
which are currently in position pa, pb, pc , …
and have masses ma, mb, mc … :
we must apply the displacements 𝑑ୟ , 𝑑ୠ , 𝑑ୡ

that defined by minimizing:

among all the choices that satisfy this,

we want the one which minimizes this

argmin
ௗ౗ , ௗౘ , ௗౙ,…

ma 𝑑ୟ

ଶ
+ mb 𝑑ୠ

ଶ
+ mc 𝑑ୡ

ଶ
+ ⋯

such that 𝒞 pa + 𝑑ୟ ,pb + 𝑑ୠ ,pc + 𝑑ୡ , …

3D video gaming - Marco Tarini
Univ Milano 2019/2020

2019-03-28

Game Physics - 3 14

Enforcing positional constraint
Example: equidistance

 To enforce the constraint
“particles a and b must stay at distance D ”
 Given: current positions pa, pb

 and masses ma, mb

 We need to apply the displacements 𝑑ୟ , 𝑑ୠ
found by minimizing:

argmin
ௗ౗ , ௗౘ

ma 𝑑ୟ

ଶ
+ mb 𝑑ୠ

ଶ

such that pa + 𝑑ୟ − pb + 𝑑ୠ = 𝐷

 And the solution (in closed form) is…

Equidistance constraints: solution for
non-equal masses
Vector3 pa, pb; // curr positions of a,b
float ma, mb; // masses of a,b
float D; // distance (to enforce)

Vector3 v = pa – pb;
float currDist = v.length;

v /= currDist; // normalization of v

float delta = currDist – D ;

/* solution of the minimization: */
pa += (mb/(ma+mb) * delta) * v;
pb -= (ma/(ma+mb) * delta) * v;

3D video gaming - Marco Tarini
Univ Milano 2019/2020

2019-03-28

Game Physics - 3 15

Enforcing positional constraint
Example: don’t sink in a plane

 To enforce the constraint
“particle a must be over (not below) a plane q ”
 Given: position of the particle pa and its mass ma

 Point on a plane pq and its normal (unit vec) 𝑛ො௤

 We need to apply the displacement 𝑑ୟ

found by minimizing:

argmin
ௗ౗ , ௗౘ

ma 𝑑ୟ

ଶ

such that pa − pq ȉ 𝑛ො௤ > 0

 And the solution (in closed form) is, trivially…

In pseudocode

Vector3 pa; // curr positions of a,b
float ma; // masses (no effect here)
Vector3 pq; // point on the plane
Vector3 nq; // normal of the plane (unit)

Vector3 v = pa – pq;
float currDist = Vector3.dot(v , n);

if (currDist < 0.0)
pa -= currDist * n; // just project!

else {} // constrain holds, do nothing

3D video gaming - Marco Tarini
Univ Milano 2019/2020

2019-03-28

Game Physics - 3 16

Example

NO

STEP 0

NO

STEP 1
before constraints

NO

STEP 1
after 1st constraint

Example

NO

STEP 1
after all constraints

multiple times

STEP 1
(implicit) velocities

NO

So, in total:
the “box”, under gravity +
impact
• had rotated
• gained angular velocity

(will keep on rotating
by inertia)

even the system does not
(explicitly) handle
rotations or
angular velocities

(works in 3D as well!)

3D video gaming - Marco Tarini
Univ Milano 2019/2020

2019-03-28

Game Physics - 3 17

Position Based Dynamics:
Advantages

 Interestingly, rich/useful set of “emerging behaviors”
(i.e. effects with “just automatically happens”) including:
 rigid, deformable, jointed objects

 made of particles + hard constraints
 their angular velocities

 automatically around…
 their barycenter
 their momentum of inertia

 angular velocity is maintained
 somewhat believable bounces on “impacts”

 but, out of designer control: impact impulses can be added

 Simulation is intrinsically fairly robust
 sensible constraints explicitly re-enforced every frame:

 e.g. the ball won’t be (permanently) out of the box containing it

simply,
enforcement
of non-
compenetration

don’t need to
be computed
(or stored)

Position Based Dynamics:
Challenges
 Simulation is only approximate
 Satisfying many constraints can be demanding

 especially collision constraints, not know a priori!
 a large number low-level constraints are needed

 Order of constraint enforcement is crucial
 and so is the need to do them in parallel

 Much of the data which is kept and dealt with implicitly
can be needed by the rest of the engine,
and therefore it must be extracted 
 e.g. current orientation (rotation) of a compound rigid object made of

connected particles:
 (needed for rendering!)

 its angular speed, barycenter pos, (average) speed…

In total, Particle-Based PBD is one good solution,
but by no means an easy, or universal, one.

