
3D video gaming - Marco Tarini
Univ Milano 2019/2020

2019-03-28

Game Physics - 3 1

Leapfrog Integration

Leapfrog Integration

t (in dt)0.0 0.5 1.0 1.5 2.0 2.5

Pos Vel Pos Vel Pos Vel

3D video gaming - Marco Tarini
Univ Milano 2019/2020

2019-03-28

Game Physics - 3 2

Leapfrog Integration
first step

t (in dt)0.0 0.5 1.0 1.5 2.0 2.5

Pos0

Vel0

Vel

2/

...),(

05.0

0

dtavv

pfa

Leapfrog Integration

t (in dt)0.0 0.5 1.0 1.5 2.0 2.5

Pos Vel Pos Vel Vel

dtvpp 5.001

dtavv

pfa

5.05.1

1 ...),(

dtvpp 5.112

dtavv

pfa

5.15.2

2 ...),(

Pos

dtvpp 5.223

Pos

3D video gaming - Marco Tarini
Univ Milano 2019/2020

2019-03-28

Game Physics - 3 3

Leapfrog method: advantages

 Better accuracy for same dt
 (better asymptotic behavior)
 “second order instead of first”
 (residual error dt3 instead of dt2)

 Same cost as Euler
 bonus: fully reversible!

Verlet method
(“position based dynamics”)

 Idea: remove velocity from state
 Current velocity: implicit
 Computed by:

delta between
 Current pos
 Last pos (which is recorded)

dtppv oldnow /)(

nowp

oldp

3D video gaming - Marco Tarini
Univ Milano 2019/2020

2019-03-28

Game Physics - 3 4

Verlet method
(position based dynamics)

one
step

expanding this…

init
state

dtvpp

dtavv

dtppv

mfa

pfunf

p

p

nownext

oldnow

now

old

now

/)(

/

)(

...

...

Verlet method
(position based dynamics)

nextnow

nowold

pp

pp

init
state

one
step

...

...

old

now

p

p

22

/

)(

dtappp

mfa

pfunf

oldnownext

now

3D video gaming - Marco Tarini
Univ Milano 2019/2020

2019-03-28

Game Physics - 3 5

The real advantage of
position based

nextnow

nowold

pp

pp

init
state

one
step

...

...

old

now

p

p

22

/

)(

dtappp

mfa

pfunf

oldnownext

now

Enforce constraints on)(nextp

Verlet: characteristics

 Implicit velocity!
 Good efficiency / accuracy ratio
 accumulated error: order of dt2

 Extra bonus: reversibility of the system
 (it’s possible to travel the evolution backward in t and

go back to the correct initial state)
 (being careful with implementation details)

 Principal advantage: flexibility
 possible to impose constraints directly on positions!

 and get “automatic” velocity adjustment
(not the correct ones, but plausible ones)

3D video gaming - Marco Tarini
Univ Milano 2019/2020

2019-03-28

Game Physics - 3 6

Verlet: caveats

 it assumes dt (time-step) to be constant
 if it varies: corrections needed! (which ones?)

 how to act on velocity
(which is implicit) ?
 e.g., for: damping
 e.g., for: impulses
 A: change instead

 how to change position without
impacting velocity?
 A: change both and

oldp

nowp oldp

dt updates in Verlet
(if they are not constant)
Problem:

if dt now changes to a new dt'
then, all pold must be updated to some p'old

Find p'old :

'/)'(

/)(

dtppv

dtppv

oldnow

oldnow

dtdtpdtdtdtpp oldnowold /'/)'('

current velocity
and position
must not change

3D video gaming - Marco Tarini
Univ Milano 2019/2020

2019-03-28

Game Physics - 3 7

Damp (drag) in Verlet

Problem: we want to damp velocities
i.e. mult them
by updating pold to some p'old

Find p'old :

dtppcvv

dtppv

oldnowDAMP

oldnow

/)'('

/)(

DAMPcvv

'

DAMPoldDAMPnowold cpcpp)1('

e.g. 0.99

Positional constraints

 Generic and expressive
 Lots of possible phenomena
 for instance: “no interpenetration”

 Easily defined
 Easy to impose

 Imposing a constraint (positional) =
 = find the positions similar to the current ones satisfying it
 = project the current state in the allowed state space

 Verlet benefit:
 update velocity: automatic !
 without using forces / impulses

 (the ones that in reality impose the constraints)
 approximation, but plausible results!

3D video gaming - Marco Tarini
Univ Milano 2019/2020

2019-03-28

Game Physics - 3 8

Example of
positional constraint

«Particles must stay
within [0 – 100] x [0 – 100] »

for(int i=0; i<NUM_PARTICLES; i++)
{

p[i].x = clamp(p[i].x, 0, 100);
p[i].y = clamp(p[i].y, 0, 100);

}

a

b

Imposing constraint: simple clamp !
ex:

1000

100

Imposing constraints like this is a first collision response.
But: for bounces (impact impulses) must be added.

Ex: Equidistance constraints

«Particles a and b must be at distance d »

dpp ba ||

bp

ap

d

3D video gaming - Marco Tarini
Univ Milano 2019/2020

2019-03-28

Game Physics - 3 9

d

Impose equidistance constraints

dpp ba ||

dpp ba ||

if

if

ap

bp

d

bp
ap

Equidistance constraints: pseudo
code
Vector3 pa, pb; // curr positions of a,b
float d; // distance (to enforce)

Vector3 v = pa – pb;
float currDist = v.length;

v /= currDist; // normalization of v

float delta = currDist – d ;

pa += (0.5 * delta) * v;
pb -= (0.5 * delta) * v;

assuming equal mass, each particle moves half the way
(see later for the general case)

3D video gaming - Marco Tarini
Univ Milano 2019/2020

2019-03-28

Game Physics - 3 10

Combinations of
equidistance constraints
 For obtaining:
 Rigid bodies
 note:

 only positions / vel / acc!
 no: angles,

angular vel
angular acc

A box?
(rigid object)
configuration of:
• 4 particles
• 6 equidistance constraints

Combinations of
equidistance constraints
 For obtaining:
 Rigid bodies
 Ragdolls
 Cloth
 Non-elastic ropes
 …

Spring-like behaviour, but
for rigid bodies!

3D video gaming - Marco Tarini
Univ Milano 2019/2020

2019-03-28

Game Physics - 3 11

Equidistance constraints
VS springs

 Aren’t they similar?
 they both mean:

these two particles “want to be” at this distance
 But:

 spring:
 applied during

force evaluation step
 affecting forces,

therefore accelerations
 models a deformable spring

between the two particles
 of a given length

 sometimes called
a “SOFT” constraint

 equidistance constraint:
 applied during

constraint enforcement
 directly affecting

positions
 models a rigid rod between

the two particles
 of a given length

 sometimes called
an “HARD” constraint

 They can be combined in one object!

More examples of
positional constraints

 Preserving areas / volumes: «Volume is 𝑣 »
 How to impose it:
1. Estimation of current total volume 𝑣

2. uniform scaling of the object of 𝑣 /𝑣
య

 Fixed positions: «particle 𝑎 stays in 𝑝 »
 particles «pinned in position»
 trivial, but useful!

 Angle constraints
 ex, on joints: «elbows cannot bend backward»

 Coplanarity / colinearity
 Non interpenetration

 (part of collision handling – see later)

3D video gaming - Marco Tarini
Univ Milano 2019/2020

2019-03-28

Game Physics - 3 12

Enforcing sets of constraints

 Many constraints to impose:
solve one break another one!

 Simultaneous enforement: computationally expensive

 Practical solution: enforce them in cascade
(a-la Gauss-Seidel):

Repeat until convergence (= max error below threshold)

…but at most for N times! (remember: soft real time)

Constr.
1

Constr.
2

Constr.
N

...

Enforcing sets of constraints

 Note:
 The whole loop for imposing the constraints happen in just

one physics step!
 Convergence:

 if constraints are not contradictory
 if convergence not reached (or solution doesn’t exist):

never mind, next frames will fix it (fairly robust)
 needed iterations (typically): 1 ~ 10 (efficient!).
 Optimization (to decrease number of needed iterations):

solve the most unsatisfied constraints first
 Problem: it’s a sequential approach!

 but parallelized versions (similar to Jacobi)
have a worse convergence in practice

3D video gaming - Marco Tarini
Univ Milano 2019/2020

2019-03-28

Game Physics - 3 13

Enforcing a positional constraint:
the general case.

Check constraint (on position)
 It holds? Nothing to do
 It doesn’t?
 All positions must be changed so that it does
 Conceptual problem:

infinite ways to achieve this. Which one to pick?
 Answer:

minimize the sum of all squared displacements
(with respect to current position)
weighted by particle masses

 Find it by analytically solving simple problems
(“analytically” = “on paper”)

Enforcing a positional constraint
the general case: formally

To enforce a constraint 𝒞 on particles a , b , c,…
which are currently in position pa, pb, pc , …
and have masses ma, mb, mc … :
we must apply the displacements 𝑑ୟ , 𝑑ୠ , 𝑑ୡ

that defined by minimizing:

among all the choices that satisfy this,

we want the one which minimizes this

argmin
ௗ , ௗౘ , ௗౙ,…

ma 𝑑ୟ

ଶ
+ mb 𝑑ୠ

ଶ
+ mc 𝑑ୡ

ଶ
+ ⋯

such that 𝒞 pa + 𝑑ୟ ,pb + 𝑑ୠ ,pc + 𝑑ୡ , …

3D video gaming - Marco Tarini
Univ Milano 2019/2020

2019-03-28

Game Physics - 3 14

Enforcing positional constraint
Example: equidistance

 To enforce the constraint
“particles a and b must stay at distance D ”
 Given: current positions pa, pb

 and masses ma, mb

 We need to apply the displacements 𝑑ୟ , 𝑑ୠ
found by minimizing:

argmin
ௗ , ௗౘ

ma 𝑑ୟ

ଶ
+ mb 𝑑ୠ

ଶ

such that pa + 𝑑ୟ − pb + 𝑑ୠ = 𝐷

 And the solution (in closed form) is…

Equidistance constraints: solution for
non-equal masses
Vector3 pa, pb; // curr positions of a,b
float ma, mb; // masses of a,b
float D; // distance (to enforce)

Vector3 v = pa – pb;
float currDist = v.length;

v /= currDist; // normalization of v

float delta = currDist – D ;

/* solution of the minimization: */
pa += (mb/(ma+mb) * delta) * v;
pb -= (ma/(ma+mb) * delta) * v;

3D video gaming - Marco Tarini
Univ Milano 2019/2020

2019-03-28

Game Physics - 3 15

Enforcing positional constraint
Example: don’t sink in a plane

 To enforce the constraint
“particle a must be over (not below) a plane q ”
 Given: position of the particle pa and its mass ma

 Point on a plane pq and its normal (unit vec) 𝑛ො

 We need to apply the displacement 𝑑ୟ

found by minimizing:

argmin
ௗ , ௗౘ

ma 𝑑ୟ

ଶ

such that pa − pq ȉ 𝑛ො > 0

 And the solution (in closed form) is, trivially…

In pseudocode

Vector3 pa; // curr positions of a,b
float ma; // masses (no effect here)
Vector3 pq; // point on the plane
Vector3 nq; // normal of the plane (unit)

Vector3 v = pa – pq;
float currDist = Vector3.dot(v , n);

if (currDist < 0.0)
pa -= currDist * n; // just project!

else {} // constrain holds, do nothing

3D video gaming - Marco Tarini
Univ Milano 2019/2020

2019-03-28

Game Physics - 3 16

Example

NO

STEP 0

NO

STEP 1
before constraints

NO

STEP 1
after 1st constraint

Example

NO

STEP 1
after all constraints

multiple times

STEP 1
(implicit) velocities

NO

So, in total:
the “box”, under gravity +
impact
• had rotated
• gained angular velocity

(will keep on rotating
by inertia)

even the system does not
(explicitly) handle
rotations or
angular velocities

(works in 3D as well!)

3D video gaming - Marco Tarini
Univ Milano 2019/2020

2019-03-28

Game Physics - 3 17

Position Based Dynamics:
Advantages

 Interestingly, rich/useful set of “emerging behaviors”
(i.e. effects with “just automatically happens”) including:
 rigid, deformable, jointed objects

 made of particles + hard constraints
 their angular velocities

 automatically around…
 their barycenter
 their momentum of inertia

 angular velocity is maintained
 somewhat believable bounces on “impacts”

 but, out of designer control: impact impulses can be added

 Simulation is intrinsically fairly robust
 sensible constraints explicitly re-enforced every frame:

 e.g. the ball won’t be (permanently) out of the box containing it

simply,
enforcement
of non-
compenetration

don’t need to
be computed
(or stored)

Position Based Dynamics:
Challenges
 Simulation is only approximate
 Satisfying many constraints can be demanding

 especially collision constraints, not know a priori!
 a large number low-level constraints are needed

 Order of constraint enforcement is crucial
 and so is the need to do them in parallel

 Much of the data which is kept and dealt with implicitly
can be needed by the rest of the engine,
and therefore it must be extracted
 e.g. current orientation (rotation) of a compound rigid object made of

connected particles:
 (needed for rendering!)

 its angular speed, barycenter pos, (average) speed…

In total, Particle-Based PBD is one good solution,
but by no means an easy, or universal, one.

