3D video gaming - Marco Tarini 2019-03-28
Univ Milano 2019/2020

Leapfrog Integration

Leapfrog Integration

0.0 0.5 1.0 1.5 2.0 2.5 t (in dt)

| | | | 1 t
T T T } f i
B B

Game Physics - 3 1

3D video gaming - Marco Tarini 2019-03-28
Univ Milano 2019/2020

Leapfrog Integration g
first step
0.0 05 1.0 15 2.0 25 t (in at

| | Il
T T 1
m

a=f(py,)

Vs =V, +a-dif2

Leapfrog Integration G,

0.0 0.5 1.0 1.5 2.0 2.5 t (in dt)
’ | i | | |

Py =Dy t+Vs-dt D, =p +V,s-dt D3 =D, +V,s-dt

a=f(p, , .) a=f(p,, .)

Vis=Vyst+a-dt Vys =V s+a-dt

Game Physics - 3 2

3D video gaming - Marco Tarini
Univ Milano 2019/2020

Game Physics - 3

p,
Leapfrog method: advantages &
e Better accuracy for same dt
e (better asymptotic behavior)
e “second order instead of first”
e (residual error dt3 instead of dt?)
e Same cost as Euler
e bonus: fully reversible! ©
p,
Verlet method E

(“position based dynamics”)

e |dea: remove velocity from state

e Current velocity: implicit

e Computed by: /.
. now

delta between

e Current pos

Pou

e Last pos (which is recorded)

vz(pnow_pold)/dt

2019-03-28

3D video gaming

Univ Milano 2019/2020

Game Physics - 3

- Marco Tarini 2019-03-28
l‘_ I
Verlet method o S
(position based dynamics)
init pnow =
state Doy = oo
e
e a=f/m expanding this...
step V=P — Poia)! dt
Vv=v+a-dt
pnext _pn0w+v dt
k
p,
Verlet method E
(position based dynamics)
nit Prow =
state p_; =...
£ = fun W
one { { (pnow) pold = pnow
step a:f/m pnow:pnext
pnexl‘Zzlynow_pdd—i_a.c{t2 j
N
4

3D video gaming - Marco Tarini
Univ Milano 2019/2020

Game Physics - 3

2019-03-28

The real advantage of
position based

iNit Prow = =
state

Poia l (

—

S = fun(p,,,)
a=f/m

one
Step pnext =2pn0w_pold +Zi.dt2

Enforce constraints on (pnex,)

_

p old — p now
p now — p next

Verlet: characteristics

e Implicit velocity!

e Good efficiency / accuracy ratio

e accumulated error: order of dt?

e Extra bonus: reversibility of the system

e (it’s possible to travel the evolution backward in t and
go back to the correct initial state)

e (being careful with implementation details)
e Principal advantage: flexibility

e possible to impose constraints directly on positions!

e and get “automatic” velocity adjustment
(not the correct ones, but plausible ones)

S

3D video gaming - Marco Tarini
Univ Milano 2019/2020

,
Verlet: caveats ’.'lf;,
A\ it assumes dt (time-step) to be constant
e if it varies: corrections needed! (which ones?)
/N how to act on velocity
(which is implicit) ?
e e.g., for: damping
e e.g., for:impulses
e A: change p,,; instead
A\ how to change position without
impacting velocity?
e A: changeboth p,,. and P,
-IL]
"“ﬂ:,t

dt updates in Verlet
(if they are not constant)
Problem:
if dt now changestoanew dt'

then, all p,,; must be updated to some p',,

<l
Il

Findp',;; :

(P — Poia)/ At current velocity

and position

<l
Il

(p,ww _p'old)/dt' must not change

Py = P, (dt—dt')/dt + p,,, -dt'/dt

Game Physics - 3

2019-03-28

3D video gaming - Marco Tarini
Univ Milano 2019/2020

Generic and expressive
e Lots of possible phenomena
e forinstance: “no interpenetration”

Easily defined
Easy to impose
e Imposing a constraint (positional) =

Verlet benefit:
e update velocity: automatic !
e without using forces / impulses

e - approximation, but plausible results!

e (the ones that in reality impose the constraints)

A
"'Dﬂ!
Damp (drag) in Verlet
e.g.0.99
Problem: we want to damp velocities e
. -y -
i.e. mult them V'=V-Cpamp
by updating p,,; tosome p' .,
Findpold: ‘_;:(pnow_pold)/dt
‘_}": v.CDAMP = (pnow _p'old)/dt
! —
Plod = Puowl=Cpp) ¥ Dot * Coamp
-‘L. J
Positional constraints §LEL
S

e =find the positions similar to the current ones satisfying it
e =project the current state in the allowed state space

Game Physics - 3

2019-03-28

3D video gaming - Marco Tarini
Univ Milano 2019/2020

Example of L
positional constraint

«Particles must stay
within [0—100] x [0 —100] »

100 - Imposing constraint: simple clamp !
X, ex:
9 % 4 . , . .
b W for(int i=0; i<NUM_PARTICLES; i++)
® % {
3 pli] .x = clamp(p[i].x, O, 100);
y plil.y = clamp(p[il.y, 0, 100);
}

0 100

A Imposing constraints like this is a first collision response.
But: for bounces (impact impulses) must be added.

Ex: Equidistance constraints ‘-‘..,;I,L“

«Particles a and b must be at distance d »

. Py
P,

lp,—p,| =d

Game Physics - 3

2019-03-28

3D video gaming - Marco Tarini
Univ Milano 2019/2020

. . . -_“— l
Impose equidistance constraints ‘-;Eﬁ

e////////i?3?4.x/

it |p,—p,|>d Y,
P.

if |p,—p,| <d e
’ «® Py
- P,
. . Bl
Equidistance constraints: pseudo L
code

Vector3 pa, pb; // curr positions of a,b
float d; // distance (to enforce)

Vector3 v = pa - pb;
float currDist = v.length;

v /= currDist; // normalization of v
float delta = currDist - d ;

pa += (0.5 * delta) * v;
pb -—= (0.5 * delta) * v;

k assuming equal mass, each particle moves half the way
(see later for the general case)

Game Physics - 3

2019-03-28

3D video gaming - Marco Tarini
Univ Milano 2019/2020

Combinations of S
equidistance constraints
e For obtaining:
e Rigid bodies
e note:
e only positions / vel / acc!
e no: angles,
angular vel Abox?
angular acc (rigid object)
configuration of:
* 4 particles
: =0 - * 6 equidistance constraints
/e ; a
|
N b
Combinations of e S

equidistance constraints

e For obtaining:
Rigid bodies
Ragdolls

Cloth

Non-elastic ropes

N
P X

Spring-like behaviour, but
for rigid bodies!

Game Physics - 3

2019-03-28

10

3D video gaming - Marco Tarini
Univ Milano 2019/2020

l‘ I
Equidistance constraints ’-L.EF

VS springs

e Aren’t they similar?

e they both mean:
these two particles “want to be” at this distance

e But:
e equidistance constraint: e spring:

e applied during e applied during
constraint enforcement force evaluation step
= directly affecting = affecting forces,

positions therefore accelerations

e models a rigid rod between e models a deformable spring
the two particles between the two particles
= of agiven length = of a given length

e sometimes called e sometimes called
an “HARD” constraint a “SOFT” constraint

e They can be combined in one object!

P
More examples of i

positional constraints

e Preserving areas / volumes: «Volume is v; »
e How to impose it:
1. Estimation of current total volume v

2. uniform scaling of the object of /v, /v
Fixed positions: «particle a staysin pg »
e particles «pinned in position»

e trivial, but useful!

Angle constraints

e ex, onjoints: «elbows cannot bend backward»
Coplanarity / colinearity

Non interpenetration

e (part of collision handling — see later)

Game Physics - 3

2019-03-28

11

3D video gaming - Marco Tarini 2019-03-28
Univ Milano 2019/2020

. : il
Enforcing sets of constraints o

e Many constraints to impose:
solve one = break another one!

e Simultaneous enforement: computationally expensive

e Practical solution: enforce them in cascade
(a-la Gauss-Seidel):

Constr. Constr. B Constr.
1 2 N

Repeat until convergence (= max error below threshold)
...but at most for N times! (remember: soft real time)

-l

Enforcing sets of constraints 5,:,1

e Note:
e The whole loop for imposing the constraints happen in just
one physics step!
e Convergence:
e if constraints are not contradictory

e if convergence not reached (or solution doesn’t exist):
never mind, next frames will fix it (fairly robust)

e needed iterations (typically): 1 ~ 10 (efficient!).

e Optimization (to decrease number of needed iterations):
solve the most unsatisfied constraints first

A\ Problem: it’s a sequential approach! ®

e but parallelized versions (similar to Jacobi)
have a worse convergence in practice

Game Physics - 3 12

3D video gaming - Marco Tarini
Univ Milano 2019/2020

Enforcing a positional constraint: &
the general case.

Check constraint (on position)
e It holds? Nothing to do

e |t doesn’t?
e All positions must be changed so that it does

e Conceptual problem:
infinite ways to achieve this. Which one to pick?

e Answer:
minimize the sum of all squared displacements
(with respect to current position)
weighted by particle masses

e Find it by analytically solving simple problems
(“analytically” = “on paper”)

Enforcing a positional constraint i,

the general case: formally

To enforce a constraint C on particlesa, b, c,...
which are currently in position p,, Py, Pe -
and have masses m,, my, m, ... :

—

we must apply the displacements d_;, d_b), d.
that defined by minimizing:

. —, 2 _ 5 2 .2
Cargmin (m,[[da]” + myllds]|” + mefjde] +)
da) db) dc,...

such that C(p, +d, ,p, +dp ,pc+d_c)D

among all the choices that satisfy this,

we want the one which minimizes this

Game Physics - 3

2019-03-28

13

3D video gaming - Marco Tarini
Univ Milano 2019/2020

. . . . —_ll— !
Enforcing positional constraint &
Example: equidistance
e To enforce the constraint

“particles a and b must stay at distance D ”
e Given: current positions p,, py,
e and masses m,, m,
e We need to apply the displacements d_a), Tb
found by minimizing:
_ 2 —y2
argmin (m, ||| * + m, |]|)
da, dp
such that [|(p,+da) — (p, + dp)|| =D
e And the solution (in closed form) is...
E]
Equidistance constraints: solution for g%

non-equal masses
Vector3 pa, pb; // curr positions of a,b

float ma, mb; // masses of a,b
float D; // distance (to enforce)

Vector3 v = pa - pb;
float currDist = v.length;

v /= currDist; // normalization of v
float delta = currDist - D ;
/* solution of the minimization: */

pa += (mb/ (ma+mb) * delta) * v;
pb -= (ma/(ma+mb) * delta) * v;

Game Physics - 3

2019-03-28

14

3D video gaming - Marco Tarini 2019-03-28
Univ Milano 2019/2020

. . . . —_l‘_ l
Enforcing positional constraint ‘.;3}
Example: don’t sink in a plane
e To enforce the constraint

“particle a must be over (not below) a plane g ”
e Given: position of the particle p, and its mass m,
e Pointon a plane p, and its normal (unit vec) g
e We need to apply the displacementdﬁa
found by minimizing:
—2
argmin (ma”da”)
da,dp
such that ||(pa - Py -r’iq” >0
e And the solution (in closed form) is, trivially...
p
In pseudocode e

Vector3 pa; // curr positions of a,b
float ma; // masses (no effect here)
Vector3 pq; // point on the plane
Vector3 nq; // normal of the plane (unit)

Vector3 v = pa - pqg;
float currDist = Vector3.dot(v , n);

if (currDist < 0.0)
pa -= currDist * n; // just project!
else {} // constrain holds, do nothing

Game Physics - 3 15

3D video gaming - Marco Tarini
Univ Milano 2019/2020

Game Physics - 3

Example

NO NO

STEP O STEP 1
before constraints

NO

STEP 1
after 1st constraint

Example

NO NO

STEP 1 STEP 1
after all constraints (implicit) velocities
multiple times

So, in total:

the “box”, under gravity +

impact

* had rotated

» gained angular velocity
(will keep on rotating
by inertia)

even the system does not

(explicitly) handle

rotations or

angular velocities

(works in 3D as well!)

2019-03-28

16

3D video gaming - Marco Tarini
Univ Milano 2019/2020

Position Based Dynamics: ‘vl,;jj,’-

Advantages

e Interestingly, rich/useful set of “emerging behaviors”
(i.e. effects with “just automatically happens”) including:
e rigid, deformable, jointed objects
e made of particles + hard constraints

e their angular velocities simply,
e automatically around... don't need to e?forcement
. or non-
e their barycenter be computed

compenetration
e their momentum of inertia (or stored)

e angular velocity is maintained
e somewhat believable bounces on “impacts”
e but, out of designer control: impact impulses can be added

e Simulation is intrinsically fairly robust

e sensible constraints explicitly re-enforced every frame:
e e.g. the ball won’t be (permanently) out of the box containing it

Position Based Dynamics: ‘-L,;l,LL

Challenges

e Simulation is only approximate
e Satisfying many constraints can be demanding
e especially collision constraints, not know a prioril
e alarge number low-level constraints are needed
e Order of constraint enforcement is crucial
e andsoisthe need to do them in parallel
e Much of the data which is kept and dealt with implicitly
can be needed by the rest of the engine,
and therefore it must be extracted ®

e e.g. current orientation (rotation) of a compound rigid object made of
connected particles:
e (needed for rendering!)

e its angular speed, barycenter pos, (average) speed...

In total, Particle-Based PBD is one good solution,
but by no means an easy, or universal, one.

Game Physics - 3

2019-03-28

17

