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Leapfrog Integration
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Leapfrog Integration
first step 
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Leapfrog method: advantages

 Better accuracy for same dt
 (better asymptotic behavior)
 “second order instead of first”
 (residual error dt3 instead of dt2)

 Same cost as Euler
 bonus: fully reversible! 

Verlet method
(“position based dynamics”)

 Idea: remove velocity from state
 Current velocity: implicit
 Computed by: 

delta between
 Current pos
 Last pos (which is recorded)

dtppv oldnow /)( 


nowp

oldp
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Verlet method
(position based dynamics)

one 
step

expanding this…
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The real advantage of
position based
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Enforce constraints on )( nextp

Verlet: characteristics

 Implicit velocity!
 Good efficiency / accuracy ratio
 accumulated error: order of dt2

 Extra bonus: reversibility of the system
 (it’s possible to travel the evolution backward in t and 

go back to the correct initial state)
 (being careful with implementation details)

 Principal advantage: flexibility
 possible to impose constraints directly on positions!

 and get “automatic” velocity adjustment
(not the correct ones, but plausible ones)
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Verlet: caveats

 it assumes dt (time-step) to be constant
 if it varies: corrections needed!  (which ones?)

 how to act on velocity
(which is implicit) ?
 e.g., for: damping
 e.g., for: impulses
 A:    change instead

 how to change position without
impacting velocity?
 A:     change both and

oldp

nowp oldp

dt updates in Verlet
(if they are not constant)
Problem:

if  dt now changes to a new  dt'
then, all pold must be updated to some  p'old

Find p'old :

'/)'(

/)(

dtppv

dtppv

oldnow

oldnow


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


dtdtpdtdtdtpp oldnowold /'/)'(' 

current velocity 
and position
must not change
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Damp (drag) in Verlet

Problem: we want to damp velocities 
i.e. mult them                        
by updating pold to some  p'old

Find p'old :

dtppcvv

dtppv

oldnowDAMP

oldnow
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e.g. 0.99

Positional constraints

 Generic and expressive
 Lots of possible phenomena
 for instance: “no interpenetration”

 Easily defined
 Easy to impose

 Imposing a constraint (positional) =
 = find the positions similar to the current ones satisfying it
 = project the current state in the allowed state space

 Verlet benefit:
 update velocity: automatic !
 without using forces / impulses

 (the ones that in reality impose the constraints)
  approximation, but plausible results!
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Example of
positional constraint

«Particles must stay 
within [0 – 100] x [0 – 100] »

for(int i=0; i<NUM_PARTICLES; i++) 
{

p[i].x = clamp( p[i].x, 0, 100 );
p[i].y = clamp( p[i].y, 0, 100 );

}

a

b

Imposing constraint: simple clamp !
ex:

1000

100

Imposing constraints like this is a first collision response.
But: for bounces (impact impulses) must be added. 

Ex: Equidistance constraints

«Particles a and b must be at distance d »

dpp ba  ||

bp

ap

d
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d

Impose equidistance constraints

dpp ba  ||

dpp ba  ||

if

if

ap

bp

d

bp
ap

Equidistance constraints: pseudo 
code
Vector3 pa, pb; // curr positions of a,b
float d;        // distance (to enforce)

Vector3 v = pa – pb;
float currDist = v.length;

v /= currDist;  // normalization of v

float delta = currDist – d ;

pa += ( 0.5 * delta) * v;
pb -= ( 0.5 * delta) * v;

assuming equal mass, each particle moves half the way
(see later for the general case)
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Combinations of
equidistance constraints
 For obtaining:
 Rigid bodies
 note:

 only positions / vel / acc!
 no: angles, 

angular vel
angular acc

A box?
(rigid object)
configuration of:
• 4 particles 
• 6 equidistance constraints

Combinations of
equidistance constraints
 For obtaining:
 Rigid bodies
 Ragdolls
 Cloth
 Non-elastic ropes
 …

Spring-like behaviour, but 
for rigid bodies!
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Equidistance constraints
VS springs

 Aren’t they similar?
 they both mean: 

these two particles “want to be”  at this distance
 But:

 spring:
 applied during 

force evaluation step
 affecting forces, 

therefore accelerations
 models a deformable spring 

between the two particles
 of a given length

 sometimes called 
a “SOFT” constraint

 equidistance constraint: 
 applied during 

constraint enforcement
 directly affecting 

positions
 models a rigid rod between 

the two particles
 of a given length

 sometimes called 
an “HARD” constraint

 They can be combined in one object!

More examples of
positional constraints

 Preserving areas / volumes: «Volume is 𝑣஼ »
 How to impose it:
1. Estimation of current total volume 𝑣 

2. uniform scaling of the object of  𝑣஼ /𝑣 
య

 Fixed positions: «particle 𝑎  stays in 𝑝௔ »
 particles «pinned in position»
 trivial, but useful!

 Angle constraints
 ex, on joints: «elbows cannot bend backward»

 Coplanarity / colinearity
 Non interpenetration 

 (part of collision handling – see later)
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Enforcing sets of constraints

 Many constraints to impose:
solve one  break another one!

 Simultaneous enforement: computationally expensive

 Practical solution: enforce them in cascade
(a-la Gauss-Seidel):

Repeat until convergence (= max error below threshold)

…but at most for N times! (remember: soft real time)

Constr.
1

Constr.
2

Constr.
N

...

Enforcing sets of constraints

 Note: 
 The whole loop for imposing the constraints happen in just 

one physics step!
 Convergence:

 if constraints are not contradictory
 if convergence not reached (or solution doesn’t exist):

never mind, next frames will fix it (fairly robust)
 needed iterations (typically): 1 ~ 10 (efficient!).
 Optimization (to decrease number of needed iterations): 

solve the most unsatisfied constraints first 
 Problem: it’s a sequential approach! 

 but parallelized versions (similar to Jacobi) 
have a worse convergence in practice
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Enforcing a positional constraint:
the general case.

Check constraint (on position)
 It holds? Nothing to do
 It doesn’t?
 All positions must be changed so that it does
 Conceptual problem: 

infinite ways to achieve this. Which one to pick?
 Answer: 

minimize the sum of all squared displacements
(with respect to current position)
weighted by particle masses

 Find it by analytically solving simple problems
(“analytically” = “on paper”)

Enforcing a positional constraint
the general case: formally

To enforce a constraint 𝒞 on particles a , b , c,…
which are currently in position pa, pb, pc , …
and have masses ma, mb, mc … :
we must apply the displacements 𝑑ୟ ,  𝑑ୠ ,  𝑑ୡ

that defined by minimizing:

among all the choices that satisfy this,

we want the one which minimizes this

argmin
ௗ౗ , ௗౘ , ௗౙ,…

ma 𝑑ୟ

ଶ
+ mb 𝑑ୠ

ଶ
+ mc 𝑑ୡ

ଶ
+ ⋯

such that   𝒞 pa + 𝑑ୟ   ,pb + 𝑑ୠ   ,pc + 𝑑ୡ   , …
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Enforcing positional constraint
Example: equidistance

 To enforce the constraint 
“particles a and b must stay at distance D ”
 Given: current positions pa, pb

 and masses ma, mb

 We need to apply the displacements 𝑑ୟ ,  𝑑ୠ 
found by minimizing:

argmin
ௗ౗ , ௗౘ 

ma 𝑑ୟ

ଶ
+ mb 𝑑ୠ

ଶ

such that  pa + 𝑑ୟ − pb + 𝑑ୠ = 𝐷

 And the solution (in closed form) is…

Equidistance constraints: solution for 
non-equal masses
Vector3 pa, pb; // curr positions of a,b
float ma, mb;   // masses of a,b
float D;        // distance (to enforce)

Vector3 v = pa – pb;
float currDist = v.length;

v /= currDist;  // normalization of v

float delta = currDist – D ;

/* solution of the minimization: */
pa += ( mb/(ma+mb) * delta) * v;
pb -= ( ma/(ma+mb) * delta) * v;
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Enforcing positional constraint
Example: don’t sink in a plane

 To enforce the constraint 
“particle a must be over (not below) a plane q ”
 Given: position of the particle pa and its mass ma

 Point on a plane pq and its normal (unit vec) 𝑛ො௤

 We need to apply the displacement 𝑑ୟ

found by minimizing:

argmin
ௗ౗ , ௗౘ 

ma 𝑑ୟ

ଶ

such that  pa − pq ȉ 𝑛ො௤ > 0

 And the solution (in closed form) is, trivially…

In pseudocode

Vector3 pa; // curr positions of a,b
float ma;   // masses (no effect here)
Vector3 pq; // point on the plane
Vector3 nq; // normal of the plane (unit)

Vector3 v = pa – pq;
float currDist = Vector3.dot( v , n );

if (currDist < 0.0) 
pa -= currDist * n; // just project!

else {} // constrain holds, do nothing
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Example

NO

STEP 0

NO

STEP 1
before constraints

NO

STEP 1
after 1st constraint

Example

NO

STEP 1
after all constraints

multiple times

STEP 1
(implicit) velocities

NO

So, in total:
the “box”, under gravity + 
impact
• had rotated
• gained angular velocity

(will keep on rotating 
by inertia)

even the system does not 
(explicitly) handle 
rotations or
angular velocities

(works in 3D as well!)
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Position Based Dynamics:
Advantages

 Interestingly, rich/useful set of “emerging behaviors”
(i.e. effects with “just automatically happens”) including:
 rigid, deformable, jointed objects

 made of particles + hard constraints
 their angular velocities

 automatically around…
 their barycenter
 their momentum of inertia

 angular velocity is maintained
 somewhat believable bounces on “impacts”

 but, out of designer control: impact impulses can be added

 Simulation is intrinsically fairly robust
 sensible constraints explicitly re-enforced every frame:

 e.g. the ball won’t be (permanently) out of the box containing it

simply, 
enforcement 
of non-
compenetration

don’t need to 
be computed
(or stored)

Position Based Dynamics:
Challenges
 Simulation is only approximate
 Satisfying many constraints can be demanding

 especially collision constraints, not know a priori!
 a large number low-level constraints are needed

 Order of constraint enforcement is crucial
 and so is the need to do them in parallel

 Much of the data which is kept and dealt with implicitly
can be needed by the rest of the engine,
and therefore it must be extracted 
 e.g. current orientation (rotation) of a compound rigid object made of 

connected particles:
 (needed for rendering!)

 its angular speed, barycenter pos, (average) speed…

In total, Particle-Based PBD is one good solution, 
but by no means an easy, or universal, one.


