
3D Video Games - Univ Milano
2018/2019

04/04/2019

Marco Tarini - Collisions Part 2 1

Geometry proxies (in 2D):
a Convex Polygon

 Intersection of half-planes
 each delimited by a line

 Stored as:
 a collection

of (oriented) lines
 Test:

 a point is inside iff
it is in each half-plane

 Good approx,
still moderate complexity

Geometry proxies (in 3D):
a Convex Polyhedron

 Intersection of half-spaces
 Like the previous, but in 3D
 stored as a collection

of planes
 each plane = a vec4

(normal, distance from origin)
 test: inside proxy iff

inside each half-space
 rotate: rotate each plane

3D Video Games - Univ Milano
2018/2019

04/04/2019

Marco Tarini - Collisions Part 2 2

Geometry proxies (in 3D):
a (general) Polyhedron

 Luxury Hit-Boxes :)
 The most accurate approximations
 The most expensive tests / storage

 Specific algorithms to test for collisions
 requiring some preprocessing
 and data structures (BSP-trees, see later)

 Creation (as meshes):
 sometimes, with automatic simplification
 often, hand made (low poly modelling)
 (they are assets!)

 Similar to a 3D mesh?
 e.g. adaptive res
 but…

(they would be wasted,
as Bounding Volumes !)

potentially concave

3D Meshes as
hit-boxes

 Differences with «rendering» meshes :
 much lower res (~ O(102))
 flat faces
 no attributes (no uv-mapping, no col, etc)

 generic polygons, not tris: ok (as long as they are flat)

 closed, water-tight (inside != outside)

 convex ones easy to support

the ones
used for
rendering

3D Video Games - Univ Milano
2018/2019

04/04/2019

Marco Tarini - Collisions Part 2 3

3D Meshes as
hit-boxes

mesh for rendering
(~600 tri faces)

(in wireframe) Collision object:
10 (polygonal) faces

3D Meshes as
hit-boxes

mesh for rendering
(~300 tri faces)

(in wireframe)

Collision object:
12 (polygonal) faces

3D Video Games - Univ Milano
2018/2019

04/04/2019

Marco Tarini - Collisions Part 2 4

Geometry proxies:
Composite Hit-Boxes

 Union of Hit-Boxes
 inside iff inside of any sub Hit-Box

 useful !
 e.g.

union of convex Hit-Boxes ==> concave Hit-Box
 e.g.

shape partially defined by a sphere,
partially by a box, etc ==> better approximation

 creation: typically by hand
 remember: hit-boxes are typically assets

Bounding Volume +
Collision Object

if (!collide(boundingVol, X))

{

return NO_COLLISION; // early reject

}

else {

CollisionData d;

if (collide(hitBox, X , &d))

{

return d; // for the response!

}
else return NO_COLLISION;

}

a simple
Bounding Volume

around
a more complex
Collision Object
approximating

the object

note: the two collide
aren’t the same function
(overloading)

3D Video Games - Univ Milano
2018/2019

04/04/2019

Marco Tarini - Collisions Part 2 5

Which geometric proxy
to support ?

 an implementation choice of the Physics Engine
 note: # of intersection tests to be implemented

quadratic with # of types supported
 note: typically, supported proxy types

can be used as either Bounding Volumes or Hit-Boxes

Type A

Type B

Type C

Type A Type B Type C

algorithm algorithm algorithm

algorithm

algorithmalgorithm

VS a Point a Ray

algorithm

algorithm

algorithm

algorithm

algorithm

algorithm useful,
e.g.
for visibility

Collision detection:
strategies

 Static Collision detection
 (“a posteriori”, “discrete”)
 approximated
 simple + quick

 Dynamic Collision detection
 (“a priori”, “continuous”)
 accurate
 demanding

t = 0

t = 1

COLLISION

t = 0

NO COLLISION

t = 1

COLLISION

3D Video Games - Univ Milano
2018/2019

04/04/2019

Marco Tarini - Collisions Part 2 6

Collision detection:
Static

 Collisions check after a physic step

 Issue: compenetration exist
 just fixed by collision response

 Issue: tunnel effect
 especially when:

- large dt
- large speeds
- thin barriers

«static»
(because objects are tested
as if they are still)

«a posteriori»
(because coll are detected
after they happen)

«discrete»
(bacause it is checked at
discrete time intervals)

t = 0

NO COLLISION

t = 1

NO COLLISION

Aka:

Collision detection:
Dynamic

 Collisions check
on the swept volume

 Advantage: better to prevent collision,
than to fix it!

 Issue: difficult to test swept volumes.
 easy for: points (swept volume = segment)
 easy for: spheres (they turn into capsules (which ones?))

 In practices, often only supported for
 static-vs-dynamic collision tests
 simples of collisors: sphere, pts
 large speeds
 decreasing dt not an option

«dynamic»
(because moving objects
are tested)

«a priori»
(because coll are detected
before they happen)

«cotinuous»
(bacause it is checked
over a time interval)

Aka:

3D Video Games - Univ Milano
2018/2019

04/04/2019

Marco Tarini - Collisions Part 2 7

Collision detection: in 2D
(easier problem)

 Same problems, same solutions
 e.g.:

2D spatial indexing,
2D bounding volumes (2D geom. proxies)…

 But we have : collision detection for 2D sprites (in screen space)

 accurate: «pixel perfect»
 efficient: HW supported! (hard wired)
 (no need for collision object approximation)

NO COLLISION NO COLLISION COLLISION

e.g.
quad-trees

e.g.
2D AABB,

circles

Collision detection

 Problemi di efficienza:

a) test fra due oggetti:
 Come renderlo efficiente?

b)evitare esplosione
quadratica dei test
 N oggetti N2 tests ?

3D Video Games - Univ Milano
2018/2019

04/04/2019

Marco Tarini - Collisions Part 2 8

Come evitare un numero quadratico
di test

 Classi di Soluzioni:
1) strutture di indicizzazione spaziale
2) BVH – Bounding Volume Hierarchies

Spatial indexing structures

 Data structures to accelerate queries of the kind:
“I’m here. Which object is around me?”

 Tasks:
 (1) construction / update

 for static parts of the scene, a preprocessing. Cheap!
 for moving parts of the scene, an update! Consuming!
 (another good reason to tag them)

 (2) access / usage
 as fast as possible

 Commonest structures (in games):
 Regular Grid
 kD-Tree
 Oct-Tree

 and it’s 2D equivalent: the Quad-Tree
 BSP Tree

3D Video Games - Univ Milano
2018/2019

04/04/2019

Marco Tarini - Collisions Part 2 9

a b

c d e f

g h i j

k l

m n o p

q

r

s

Regular Grid (or: lattice)

the scene

a
b
c
d
e
f
g
h
i
j
k
l

m
n
o
p
q
r
s

Regular Grid (or: lattice)

 Array 3D of cells (same size)
 each cell: a list of pointers to collison objects

 Indexing function:
 Point3D cell index, (constant time!)

 Construction: (“scatter” approach)
 for each object B[i]

 find the cells C[j] which it touches
 add a pointer in C[j] to B[i]

 Queries: (“gather” approach)
 given a point to test p,

find cell C[j], test all objects linked to it
 Problem: cell size

 too small: memory occupancy too large
quadratic with inverse of cell size!

 too big: too many objects in one cell
 sometimes, no cell size is good enough

3D Video Games - Univ Milano
2018/2019

04/04/2019

Marco Tarini - Collisions Part 2 10

kD-tree

the scene

A

A

B C

B C

D

E

D E

F G

F G

I

H H I

K

J

J K

L
M

L MN O

N O

D E F

H

K

M

N O

kD-trees

 Hierarchical structure: a tree
 each node: a subpart of the 3D space
 root: all the world
 child nodes: partitions of the father
 objects linked to leaves

 kD-tree:
 binary tree
 each node: split over one dimension (in 3D: X,Y,Z)
 variant:

 each node optimizes (and stores) which dimension, or
 always same order: e.g. X then Y then Z

 variant:
 each node optimizes the split point, or
 always in the middle

3D Video Games - Univ Milano
2018/2019

04/04/2019

Marco Tarini - Collisions Part 2 11

Quad-Tree
(in 2D)

the (2D) world

often used
for
terrains

Oct Tree
(same, for 3D)

3D Video Games - Univ Milano
2018/2019

04/04/2019

Marco Tarini - Collisions Part 2 12

Quad trees (in 2D)
Oct trees (in 3D)

 Similar to kD-trees, but:
 tree: branching factor: 4 (2D) or 8 (3D)
 each node: splits into all dimensions at once,

(in the middle)

 Construction (just as kD-trees):
 continue splitting until a end nodes has few enough

objects
(or limit level reached)

BSP-tree
Binary Spatial Partitioning tree

the world

3D Video Games - Univ Milano
2018/2019

04/04/2019

Marco Tarini - Collisions Part 2 13

BSP-trees for
the Concave Polyhedron proxy

BSP-trees for
the Concave Polyhedron proxy

F

D

A

OUT B

OUT

OUT

C

IN

D OUT

E

OUT IN

F

E

C

B

A

3D Video Games - Univ Milano
2018/2019

04/04/2019

Marco Tarini - Collisions Part 2 14

BSP-tree
Binary Spatial Partitioning tree

 Another variant
 a binary tree (like the kD-tree)

 root = all scene (like kD-tree)
 but, each node is split by an arbitrary plane

 (or a line, in 2D)
 plane is stored at node, as (nx, ny, nz, k)

 planes can be optimized for a given scene
 e.g. to go for a 50%-50% object split at each node
 e.g. to exactly one object at leaves

 (assuming it is always possible to split any two apart – reasonable assumption)

 Another use: to test (Generic) Polyhedron proxy:
 note: with planes defined in its object space
 each leaf: inside or outside

 (no need to store them: left-child = in, right-child = out)
 tree precomputed for a given Collision Object

Reminder:
Plane VS Point test

 Input: a point 𝑞
a plane given by:
 its normal: 𝑛
 a point on it: 𝑝

 Q: on which side of the plane is 𝑞 ?
 A: it’s the sign of

𝑛 ȉ 𝑞 − 𝑝 =
𝑛 ȉ 𝑞 − 𝑛 ȉ 𝑝 =
𝑛 ȉ 𝑞 + 𝐾 =

(𝑛௫, 𝑛௬, 𝑛௭, 𝐾) ȉ (𝑞௫, 𝑞௬, 𝑞௭, 1)

𝑞

𝑝
𝑛

the vec4
representing the plane

𝐾 = −𝑛 ȉ 𝑝
(minus dist. of plane from orig.)

3D Video Games - Univ Milano
2018/2019

04/04/2019

Marco Tarini - Collisions Part 2 15

BVH
Bounding Volume Hierarchy

BVH –
Bounding Volume Hierarchies

E

F

A
D

C
B

FE

DA CB

3D Video Games - Univ Milano
2018/2019

04/04/2019

Marco Tarini - Collisions Part 2 16

BVH –
Bounding Volume Hierarchies

E

F

A
D

C
BG

H

J

K

M
M

J K

FG EH

DA CB

BVH
Bounding Volume Hierarchy

 Idea: use the scene hierarchy given by the scene
graph
 (instead of a spatial derived one)

 associate a Bounding Volumes to each node
 rule: a BV of a node bounds all objects in the subtree

 construction / update: quick!
 bottom-up: recursive (how?)

 using it:
 top-down: visit (how?)
 note: not a single root to leaf path

 may need to follow multiple children of a node
(in a BSP-tree: only one)

3D Video Games - Univ Milano
2018/2019

04/04/2019

Marco Tarini - Collisions Part 2 17

Spatial indexing structures
Recap
 Regular Grid

 the most parallelizable (to update / construct / use)
 constant time access (best!)
 quadratic / cubic space (2D, 3D)

 kD-tree, Oct-tree, Quad-tree
 compact
 simple

 BSP-tree
 optimized splits! best performance when accessed
 optimized splits! more complex construction / update
 ideal for static parts of the scene?
 (also, used for generic Polyhedron Coll. Obj,)

 BVH
 simplest construction
 non necessarily very efficient to access

 may need to traverse multiple children
 if uses same hierarchy of the scene-graph: not always the best

 ideal for dynamic parts of the scene?

Physics Engine:
an implementation problem
 Task: Dynamics:

 (forces, speed and position updates…)
 simple structures, fixed workflow
 highly parallelizable: GPU

 Task: Constraints Enforcement:
 (all the various kinds of them…)
 still moderately simple structures, fixed workflow
 still highly parallelizable: hopefully, GPU

 Task: Collisions Detection:
 non-trivial data structures, hierarchies, recursive algorithms…
 hugely variable workflow

 (e.g.: quick on no collision, more complex on the few exceptions)
 difficult to parallelize: CPU
 but outcome affect the other two tasks (e.g. creates constraints):

 ==> CPU-GPU communication, and ==> GPU structures updates
(problematic on many architectures)

3D Video Games - Univ Milano
2018/2019

04/04/2019

Marco Tarini - Collisions Part 2 18

Per approfondire
alcuni argomenti

 Erwin Coumans
SIGGRAPH 2015 course
http://bulletphysics.org/wordpress/?p=432

 Müller-Fischer et al.
Real-time physics
(Siggraph course notes, 2008)
http://www.matthiasmueller.info/realtimephysics/

