
3D Video Games - Univ Milano
2018/2019

04/04/2019

Marco Tarini - Collisions Part 2 1

Geometry proxies (in 2D):
a Convex Polygon

 Intersection of half-planes
 each delimited by a line

 Stored as:
 a collection

of (oriented) lines
 Test:

 a point is inside iff
it is in each half-plane

 Good approx,
still moderate complexity

Geometry proxies (in 3D):
a Convex Polyhedron

 Intersection of half-spaces
 Like the previous, but in 3D
 stored as a collection

of planes
 each plane = a vec4

(normal, distance from origin)
 test: inside proxy iff

inside each half-space
 rotate: rotate each plane

3D Video Games - Univ Milano
2018/2019

04/04/2019

Marco Tarini - Collisions Part 2 2

Geometry proxies (in 3D):
a (general) Polyhedron

 Luxury Hit-Boxes :)
 The most accurate approximations
 The most expensive tests / storage

 Specific algorithms to test for collisions
 requiring some preprocessing
 and data structures (BSP-trees, see later)

 Creation (as meshes):
 sometimes, with automatic simplification
 often, hand made (low poly modelling)
 (they are assets!)

 Similar to a 3D mesh?
 e.g. adaptive res
 but…

(they would be wasted,
as Bounding Volumes !)

potentially concave

3D Meshes as
hit-boxes

 Differences with «rendering» meshes :
 much lower res (~ O(102))
 flat faces
 no attributes (no uv-mapping, no col, etc)

 generic polygons, not tris: ok (as long as they are flat)

 closed, water-tight (inside != outside)

 convex ones easy to support

the ones
used for
rendering

3D Video Games - Univ Milano
2018/2019

04/04/2019

Marco Tarini - Collisions Part 2 3

3D Meshes as
hit-boxes

mesh for rendering
(~600 tri faces)

(in wireframe) Collision object:
10 (polygonal) faces

3D Meshes as
hit-boxes

mesh for rendering
(~300 tri faces)

(in wireframe)

Collision object:
12 (polygonal) faces

3D Video Games - Univ Milano
2018/2019

04/04/2019

Marco Tarini - Collisions Part 2 4

Geometry proxies:
Composite Hit-Boxes

 Union of Hit-Boxes
 inside iff inside of any sub Hit-Box

 useful !
 e.g.

union of convex Hit-Boxes ==> concave Hit-Box
 e.g.

shape partially defined by a sphere,
partially by a box, etc ==> better approximation

 creation: typically by hand
 remember: hit-boxes are typically assets

Bounding Volume +
Collision Object

if (!collide(boundingVol, X))

{

return NO_COLLISION; // early reject

}

else {

CollisionData d;

if (collide(hitBox, X , &d))

{

return d; // for the response!

}
else return NO_COLLISION;

}

a simple
Bounding Volume

around
a more complex
Collision Object
approximating

the object

note: the two collide
aren’t the same function
(overloading)

3D Video Games - Univ Milano
2018/2019

04/04/2019

Marco Tarini - Collisions Part 2 5

Which geometric proxy
to support ?

 an implementation choice of the Physics Engine
 note: # of intersection tests to be implemented

quadratic with # of types supported
 note: typically, supported proxy types

can be used as either Bounding Volumes or Hit-Boxes

Type A

Type B

Type C

Type A Type B Type C

algorithm algorithm algorithm

algorithm

algorithmalgorithm

VS a Point a Ray

algorithm

algorithm

algorithm

algorithm

algorithm

algorithm useful,
e.g.
for visibility

Collision detection:
strategies

 Static Collision detection
 (“a posteriori”, “discrete”)
 approximated
 simple + quick

 Dynamic Collision detection
 (“a priori”, “continuous”)
 accurate
 demanding

t = 0

t = 1

COLLISION

t = 0

NO COLLISION

t = 1

COLLISION

3D Video Games - Univ Milano
2018/2019

04/04/2019

Marco Tarini - Collisions Part 2 6

Collision detection:
Static

 Collisions check after a physic step

 Issue: compenetration exist
 just fixed by collision response

 Issue: tunnel effect
 especially when:

- large dt
- large speeds
- thin barriers

«static»
(because objects are tested
as if they are still)

«a posteriori»
(because coll are detected
after they happen)

«discrete»
(bacause it is checked at
discrete time intervals)

t = 0

NO COLLISION

t = 1

NO COLLISION 

Aka:

Collision detection:
Dynamic

 Collisions check
on the swept volume

 Advantage: better to prevent collision,
than to fix it!

 Issue: difficult to test swept volumes.
 easy for: points (swept volume = segment)
 easy for: spheres (they turn into capsules (which ones?))

 In practices, often only supported for
 static-vs-dynamic collision tests
 simples of collisors: sphere, pts
 large speeds
 decreasing dt not an option

«dynamic»
(because moving objects
are tested)

«a priori»
(because coll are detected
before they happen)

«cotinuous»
(bacause it is checked
over a time interval)

Aka:

3D Video Games - Univ Milano
2018/2019

04/04/2019

Marco Tarini - Collisions Part 2 7

Collision detection: in 2D
(easier problem)

 Same problems, same solutions
 e.g.:

2D spatial indexing,
2D bounding volumes (2D geom. proxies)…

 But we have : collision detection for 2D sprites (in screen space)

 accurate: «pixel perfect»
 efficient: HW supported! (hard wired)
 (no need for collision object approximation)

NO COLLISION NO COLLISION COLLISION

e.g.
quad-trees

e.g.
2D AABB,

circles

Collision detection

 Problemi di efficienza:

a) test fra due oggetti:
 Come renderlo efficiente?

b)evitare esplosione
quadratica dei test
 N oggetti  N2 tests ?

3D Video Games - Univ Milano
2018/2019

04/04/2019

Marco Tarini - Collisions Part 2 8

Come evitare un numero quadratico
di test

 Classi di Soluzioni:
1) strutture di indicizzazione spaziale
2) BVH – Bounding Volume Hierarchies

Spatial indexing structures

 Data structures to accelerate queries of the kind:
“I’m here. Which object is around me?”

 Tasks:
 (1) construction / update

 for static parts of the scene, a preprocessing. Cheap! 
 for moving parts of the scene, an update! Consuming! 
 (another good reason to tag them)

 (2) access / usage
 as fast as possible

 Commonest structures (in games):
 Regular Grid
 kD-Tree
 Oct-Tree

 and it’s 2D equivalent: the Quad-Tree
 BSP Tree

3D Video Games - Univ Milano
2018/2019

04/04/2019

Marco Tarini - Collisions Part 2 9

a b

c d e f

g h i j

k l

m n o p

q

r

s

Regular Grid (or: lattice)

the scene

a
b
c
d
e
f
g
h
i
j
k
l

m
n
o
p
q
r
s

Regular Grid (or: lattice)

 Array 3D of cells (same size)
 each cell: a list of pointers to collison objects

 Indexing function:
 Point3D  cell index, (constant time!)

 Construction: (“scatter” approach)
 for each object B[i]

 find the cells C[j] which it touches
 add a pointer in C[j] to B[i]

 Queries: (“gather” approach)
 given a point to test p,

find cell C[j], test all objects linked to it
 Problem: cell size

 too small: memory occupancy too large
quadratic with inverse of cell size!

 too big: too many objects in one cell
 sometimes, no cell size is good enough 

3D Video Games - Univ Milano
2018/2019

04/04/2019

Marco Tarini - Collisions Part 2 10

kD-tree

the scene

A

A

B C

B C

D

E

D E

F G

F G

I

H H I

K

J

J K

L
M

L MN O

N O

D E F

H

K

M

N O

kD-trees

 Hierarchical structure: a tree
 each node: a subpart of the 3D space
 root: all the world
 child nodes: partitions of the father
 objects linked to leaves

 kD-tree:
 binary tree
 each node: split over one dimension (in 3D: X,Y,Z)
 variant:

 each node optimizes (and stores) which dimension, or
 always same order: e.g. X then Y then Z

 variant:
 each node optimizes the split point, or
 always in the middle

3D Video Games - Univ Milano
2018/2019

04/04/2019

Marco Tarini - Collisions Part 2 11

Quad-Tree
(in 2D)

the (2D) world

often used
for
terrains

Oct Tree
(same, for 3D)

3D Video Games - Univ Milano
2018/2019

04/04/2019

Marco Tarini - Collisions Part 2 12

Quad trees (in 2D)
Oct trees (in 3D)

 Similar to kD-trees, but:
 tree: branching factor: 4 (2D) or 8 (3D)
 each node: splits into all dimensions at once,

(in the middle)

 Construction (just as kD-trees):
 continue splitting until a end nodes has few enough

objects
(or limit level reached)

BSP-tree
Binary Spatial Partitioning tree

the world

3D Video Games - Univ Milano
2018/2019

04/04/2019

Marco Tarini - Collisions Part 2 13

BSP-trees for
the Concave Polyhedron proxy

BSP-trees for
the Concave Polyhedron proxy

F

D

A

OUT B

OUT

OUT

C

IN

D OUT

E

OUT IN

F

E

C

B

A

3D Video Games - Univ Milano
2018/2019

04/04/2019

Marco Tarini - Collisions Part 2 14

BSP-tree
Binary Spatial Partitioning tree

 Another variant
 a binary tree (like the kD-tree)

 root = all scene (like kD-tree)
 but, each node is split by an arbitrary plane

 (or a line, in 2D)
 plane is stored at node, as (nx, ny, nz, k)

 planes can be optimized for a given scene
 e.g. to go for a 50%-50% object split at each node
 e.g. to exactly one object at leaves

 (assuming it is always possible to split any two apart – reasonable assumption)

 Another use: to test (Generic) Polyhedron proxy:
 note: with planes defined in its object space
 each leaf: inside or outside

 (no need to store them: left-child = in, right-child = out)
 tree precomputed for a given Collision Object

Reminder:
Plane VS Point test

 Input: a point 𝑞
a plane given by:
 its normal: 𝑛
 a point on it: 𝑝

 Q: on which side of the plane is 𝑞 ?
 A: it’s the sign of

𝑛 ȉ 𝑞 − 𝑝 =
𝑛 ȉ 𝑞 − 𝑛 ȉ 𝑝 =
𝑛 ȉ 𝑞 + 𝐾 =

(𝑛௫, 𝑛௬, 𝑛௭, 𝐾) ȉ (𝑞௫, 𝑞௬, 𝑞௭, 1)

𝑞

𝑝
𝑛

the vec4
representing the plane

𝐾 = −𝑛 ȉ 𝑝
(minus dist. of plane from orig.)

3D Video Games - Univ Milano
2018/2019

04/04/2019

Marco Tarini - Collisions Part 2 15

BVH
Bounding Volume Hierarchy

BVH –
Bounding Volume Hierarchies

E

F

A
D

C
B

FE

DA CB

3D Video Games - Univ Milano
2018/2019

04/04/2019

Marco Tarini - Collisions Part 2 16

BVH –
Bounding Volume Hierarchies

E

F

A
D

C
BG

H

J

K

M
M

J K

FG EH

DA CB

BVH
Bounding Volume Hierarchy

 Idea: use the scene hierarchy given by the scene
graph
 (instead of a spatial derived one)

 associate a Bounding Volumes to each node
 rule: a BV of a node bounds all objects in the subtree

 construction / update: quick! 
 bottom-up: recursive (how?)

 using it:
 top-down: visit (how?)
 note: not a single root to leaf path

 may need to follow multiple children of a node
(in a BSP-tree: only one)

3D Video Games - Univ Milano
2018/2019

04/04/2019

Marco Tarini - Collisions Part 2 17

Spatial indexing structures
Recap
 Regular Grid

  the most parallelizable (to update / construct / use)
  constant time access (best!)
  quadratic / cubic space (2D, 3D)

 kD-tree, Oct-tree, Quad-tree
  compact
  simple

 BSP-tree
  optimized splits!  best performance when accessed
  optimized splits! more complex construction / update
 ideal for static parts of the scene?
 (also, used for generic Polyhedron Coll. Obj,)

 BVH
  simplest construction
  non necessarily very efficient to access

 may need to traverse multiple children
 if uses same hierarchy of the scene-graph: not always the best

 ideal for dynamic parts of the scene?

Physics Engine:
an implementation problem
 Task: Dynamics:

 (forces, speed and position updates…)
 simple structures, fixed workflow
 highly parallelizable: GPU

 Task: Constraints Enforcement:
 (all the various kinds of them…)
 still moderately simple structures, fixed workflow
 still highly parallelizable: hopefully, GPU

 Task: Collisions Detection:
 non-trivial data structures, hierarchies, recursive algorithms…
 hugely variable workflow

 (e.g.: quick on no collision, more complex on the few exceptions)
 difficult to parallelize: CPU
 but outcome affect the other two tasks (e.g. creates constraints):

 ==> CPU-GPU communication, and ==> GPU structures updates
(problematic on many architectures)

3D Video Games - Univ Milano
2018/2019

04/04/2019

Marco Tarini - Collisions Part 2 18

Per approfondire
alcuni argomenti

 Erwin Coumans
SIGGRAPH 2015 course
http://bulletphysics.org/wordpress/?p=432

 Müller-Fischer et al.
Real-time physics
(Siggraph course notes, 2008)
http://www.matthiasmueller.info/realtimephysics/

