
3D video gaming - Marco Tarini
Univ Milano

2019-04-08

Particle Systems 1

3D video games

Particle Systems

Marco Tarini

Particle system:
one 3D asset

 Digital representations of 3D objects...
 Not easily described by their surfaces
 And/or: very dynamic (variable topology)

 …such as:
 clouds, dust clouds
 flames, explosions
 water spray, waterfall, spouts
 rain, falling snow
 wind (transporting dust)
 steam whiffle, walking dust-puffs
 custom visual effects (e.g. for spells, etc)
 swarms of flies
 sparks, fireworks
 gusts of smoke
 etc…

(aka particle effect, particle Fx)

3D video gaming - Marco Tarini
Univ Milano

2019-04-08

Particle Systems 2

Particle systems:
just a bunch of particles
 one particle represents
 a water drop, a flame spark,

a rain drop, a smoke puff…
 state of a particle
 includes: position, and maybe: orientation, velocity,
 lifespan («time (left) to live»)
 custom variables: size, color , etc…

 Its dynamically emitted,
 From an «emitter»

 evolved, (state changes)
 and disposed

According to
some predefined
criteria

Emitters & Particles

Emitter (plane)

Emitters
(spheres)

(example: falling snow) (exampe: burst flame)

Particles

3D video gaming - Marco Tarini
Univ Milano

2019-04-08

Particle Systems 3

Emitter:
the producer of particles
 associated in a scene graph node

 i.e.: it is positioned in the scene with a model transformation
 i.e.: it has its own object space
 to position/orientate the emitter

means
to position/orientate the particle system

 emits particles according a designated criterion…
 in pseudo-random way

 with chosen probability distribution
 position generated in its space object

 at a designated rate (how many particles/sec)
 produces particle with an initial state (e.g. initial velocity)

 can also be randomized
 …for an established interval of time

 e.g.: short (e.g. an explosion)
 or medium (e.g. an blood gush from a wound)
 or long (e.g. a column of smoke)
 or undefined (e.g. water from tap, flame from torch…)

The blaze,
explosion,
water
spray…

Emitter’s shape

 Set of positions where
new particles can be produced

 Just a 3D geometrical abstraction
useful to guide particles creation
 E.g. a sphere, cone, box, plan, point…
 Particle created in a pseudo-random position

inside this volume
 Particle state:

initialized with data expressed in world space
or in object space (of the emitter)
 e.g.: smoke: vel predominantly in Y dir of world space
 e.g.: rocket engine blaze: in Z dir of emitter space

3D video gaming - Marco Tarini
Univ Milano

2019-04-08

Particle Systems 4

Evolution of the particles

 Physic Engine task (and extremely parallelizable)
 not necessarily full fledged physics

 often simplified - huge number of particles! (10^1 – 10^5)
 maybe ad-hoc (e.g. smoke: «move up and expand»)

 Particles progress computation can be:
 numeric: state(t+dt)  f (state(t) , dt)
 or analytic: state(t)  f (t)

 Can be computed in: emitter space, or world space
 Particles can interact with (or, not)

 other particles (e.g. cohesion):
 that’s expensive (therefore rare)

 other object (collisions): (expensive)
 if static: or only static parts of the scene, or also dynamic
 if dynamic: “one way” (usually), or “two ways” (rare)

Simplified example in C++

class Particle{
vec3 pos;
vec3 vel;
float time_to_live; // how much longer?
...

}

class ParticleSystem{
std::vector< Particle > particles;
void evolve(float dt);
void render();
void init(vec3 p);

}

3D video gaming - Marco Tarini
Univ Milano

2019-04-08

Particle Systems 5

Rendering
of the particles system

Way 1: each particle rendered separately,
with one
 one rendering primitive

 A point (“point splatting”) , a segment…
 or, one small 3D model

 few (or one!) polygons, maybe textured
 or, an impostor , i.e.

 a small quad centered at the particle
 which is oriented towards the observer
 with a texture (often, animated: frames)

e.g. alpha maps + RGB maps
 also called “billboard”

Most
common

case

Textured impostors
for particle rendering

3D video gaming - Marco Tarini
Univ Milano

2019-04-08

Particle Systems 6

Textured impostors
for particle rendering

Rendering
of the particles system

Way 2: screen-space particle merging
 pass 1:

splat a temporary “blob” for each particle
(paint on the depth buffer)

 pass 2:
estimation of normals screen space
of “blobs” union

 pass 3:
rendering of the resulting surface

«Luxury» alternative for fluids.
Different particles are fused into one surface!

3D video gaming - Marco Tarini
Univ Milano

2019-04-08

Particle Systems 7

Authoring
a particle system

 Particle system = just another asset
 Authoring it = the task of the Effects specialist
 Designing the behavior

 Specify how particles are created & evolved
 through programming scripts for the task (e.g. shaders), or
 and/or by specifying predefined set of parameters

(determined by the given particle systems)
 Design the look

 textures for impostors, or tiny 3D models,
or splat parameters, etc.

 No standard format for particle systems 
 each Game Engine / Fx editor uses its own system/format

Many particle system
framework / software exists
Example of specialized tools
 Houdini (widely used also for movies)
 Cascade (in Unreal)
 Particle Flows (in 3D studio Max)
 X-Particles (for Cinema4D)
 thinkingParticles (plug-in for different software including)
 …
Many systems implement their own built-in versions
 Unity (“shuriken”) wysiwyg slider-based editor
 Blender
 Maya (“nParticles”)
 …

3D video gaming - Marco Tarini
Univ Milano

2019-04-08

Particle Systems 8

Lack of established file-formats
working across different systems

 Unity: .prefab
 Unreal: “cascade” file format
 Maya: .pdb .pda
 Renderman: .ptc
 Houdini: .geo .bgeo
 A few “Esperanto” attempts:

(by Disney) (by Sony)

Particle systems:
cosmetics or gameplay?

 Usually, only graphic coating
 increases visual realisms
 communicates what’s going on to the player
 but: no effect of single particles on gameplay

 This justifies many approximations:
 e.g. particle collisions: absent or one-way

 A few remarkable exceptions

