
3D video gaming - Marco Tarini
Univ Milano

2019-05-03

Texures part 2 1

Two types of UV-maps

 NOT injective UV mapping
 Different zones of the mesh mapped to the same

texture region
 e.g.: with overlapping charts
  Optimization of texture RAM

 Can exploit of simmetries / repetitions

 Injective UV mapping
 1 (non empty) point on the texture =

1 point on the mesh
 non-overlapping charts!
  Generality / Flexibility

 Used for several scopes (e.g. light baking)

 Different objectives
 often, both are present: 2 distinct UV maps
 2 distinct UV attributes for each vertex

Which is the type of the
UV-maps shown in prev slides?

aka: “Unwrapping”
or: “Unwrapped UVs”

or: “1:1 UV-map”
or: “Lightmap” UV-map

or: “Non-overlapping” UV-map

aka: “UV-map” (the standard)

RGB maps:
How are they obtained?

 Image first, then UV-mapping
 e.g. Images from photos
 e.g. tileable images

 UV-mapping first, then paint 2D
 paint with 2D app (e.g. photoshop)

 UV-mapping first, then paint 3D
 paint within 3D modelling software,
 or: 1. export 2D rendering,

2. paint over with e.g. photoshop,
3. reimport images
4. goto 1

UV-mapper

UV-mapper 2D painter

UV-mapper 3D painter

3D video gaming - Marco Tarini
Univ Milano

2019-05-03

Texures part 2 2

RGB maps:
How are they obtained?

…or:
 first Paint 3D
 on hi-res model,
 “paint” on vertex attributes
 e.g. with Z brush…

 then coarsen
 build / autobuild final low-poly version

 then UV-map
 the low-poly model
 must be a 1:1 mapping!

 then auto-texture
 auto build texture

more
about
this later…

Cutout textures example
Texels = transparency level (0 or 1)

Alpha map

RGB map

3D video gaming - Marco Tarini
Univ Milano

2019-05-03

Texures part 2 3

Cutout textures
Texels = transparency level (0 or 1)

 e.g.: drapes, beard...

by Micheal
Filipowski
2004

texture

Cutout textures
Texels = transparency level (0 or 1)

 e.g.: trees, foliage

3D video gaming - Marco Tarini
Univ Milano

2019-05-03

Texures part 2 4

Texture mapping and Alpha Test

 Eg: fur, fur coats
(repeated)
texture

Bump-Map (*)

 a texture modelling (or, providing an illusion of)
shape details (i.e., high-frequency geometric features)
 details not modeled by the “real” geometry (the mesh)
 remember: meshes tend to be low-poly

 not much detail in them
 approach also known as “Texture-for-Geometry”
 rationale: texels are cheaper to render/store than vertices!
 geometric details may extrude out or be engraved in

the “real” (mesh) surface
 in many cases: the detail affects lighting only

 sufficient to trick the eye
 especially true with dynamic lighting

(*) This terminology not universal: «Bump-map» can mean just «displacement map»

3D video gaming - Marco Tarini
Univ Milano

2019-05-03

Texures part 2 5

Types of Bump maps

Bump maps

Displacement
maps

Normal
maps

Scalar Vectorial Object
Space

Tangent
Space

most common

Types of Bump maps

 Bump map:
 A texture encoding hi-frequency details

 Displacement Map:
 Details are encoded by storing differences between mesh geometry

and detailed surface:
 as scalars (distance along the normal), or as vectors
 used for: on-the-fly re-tessellation, and parallax mapping technique

 Normal Map:
 Details are encoded by storing the normals of the detailed surface
 used for: affecting the lighting
 In which frame?
 In Object Space: (Only for 1:1 UV-mapping)
 In Tangent Space: (TBN space)
 Usable on more surfaces independently from the orientation
 Requires Tangent-Bitangent direction and normals on surface

3D video gaming - Marco Tarini
Univ Milano

2019-05-03

Texures part 2 6

“F
la

t s
ha

di
ng

”
(n

ot
 u

se
d

in
 g

am
es

)

two coinciding
vertices

(vertex duplication)

crease
(hard edge)

curved,
smooth

What it is: What it looks like:

normals
derived from geometry
(constant inside faces)

normals as
vertex attributes

(interpolated inside faces)

piecewise
flat surface

curved
surface

Sm
oo

th
 s

ha
di

ng
(s

ta
nd

ar
d)

As
 a

bo
ve

,
w

ith
 s

ea
m

s

two coinciding
vertices

(vertex duplication)

crease
(hard edge)

curved,
smooth

What it is: What it looks like:

normals as
vertex attributes

(interpolated inside faces)

curved
surface

N
or

m
al

 a
tt

rib
ut

es
w

ith
 S

ea
m

s

normals: texels from
a texture

detailed
surfaceN

or
m

al
 m

ap
pe

d

3D video gaming - Marco Tarini
Univ Milano

2019-05-03

Texures part 2 7

Bump-Map:
From the modeler perspective

 macro-structure of the object  low-poly mesh
 e.g.: the general shape of the horse
 e.g.: the general shape of the face
 e.g.: the general shape of the dragon

 meso-structure of the object  bump-map
 e.g.: the musculature of the horse
 e.g.: the wrinkles of the face
 e.g.: the flakes of the dragon

 micro-structure of the object material parameters
 e.g.: the velvet-like fur of the horse
 e.g.: the structure of the dermis / sebum
 e.g.: the micro roughness / smoothnes of the flakes

Bump-Mapping see demo!

+ =

Low-poly mesh
(uv-mapped!)

Bump-map
(here: a

tangent space normal map)

lots of cheap
geometric detail

(apparently)

Low-poly mesh

assets courtesy of “Mount&Blade” (Talesworlds)

Bump-map

3D video gaming - Marco Tarini
Univ Milano

2019-05-03

Texures part 2 8

Displacement map (scalar):
concept

Stores the distance of the detailed surfaces
from the plain geometry
 example: a bump-map for a screw-head :

Detailed surfaces
(which I would like to represet)he

ad

of
 th

e

sc
re

w

low-poly mesh
(my approximation) (here: flat )

displacement map
(scalars)

0 0 0 0 .1 .5 .6 .6 .7 .5 .4 .2 0 0 0 0 0 0 00 0 0

0.2
0.6

0.4

(scalar) displacement map: notes

 Each texel stores: a distance of the
detailed surface
 Along the normal direction (of low-poly mesh)
 1 scalar per texel –> 1 channel texture

 Which way:
 outwards (extrusions)
 inwards (excavations)
 or both (signed displacements)

 Storage:
 gray-scale image (1 scalar per pixel)
 remap values within the interval [0..1]
 global scale factor (on the fly)

 Possible uses:
 Direct lighting of implied normals: “embossing” effect

(old effect: it’s a bad approximation, not common anymore)
 Global illumination (ambient occlusion)
 «Parallax mapping» technqie
 Intermediate data for the construction of a normal map

white = outwards
black = flat

See later

Easy to paint and
manipulate!

See later

See later

3D video gaming - Marco Tarini
Univ Milano

2019-05-03

Texures part 2 9

Vectorial displacement map :
concept

Store Vectors from the plain surface
to the detailed surfaces

Detailed surface
(I would like to model)

low-poly mesh
(approx. of ^) (here: flat )

displacement map
(vectorial)

“subsquare”!
Not an height field

More expressive
variant, but more
expensive
and less usable
Not widely used
(in games).

(scalar) Displacement map:
Rendering – parallax mapping

 Technique used to simulate the parallax effect
 (onto a scalar Displacement Map)

 We will see it in the lecture on rendering

3D video gaming - Marco Tarini
Univ Milano

2019-05-03

Texures part 2 10

Normal Map:
concept

Store the Normals of the detailed surfaces
 example -- a normal-map for a screw-head :

Detailed surface
(I would like to model)h

e
a

d

o
f t

h
e

sc

re
w

low-poly mesh
(approximation of ^) (here: flat )

normal map
(one normal per texel)

Normal Map:
notes

 Affects the lighting only
 not the parallax
 not the shape of the object
 The lighting reflects the hi-freq detail of the object

 dynamically (with variable lights!)
 Total illusion: very convenient

 If we are not trying to model a macro-structure
 In rendering: use the normal from the texture

 (for lighting)
 Instead of the interpolated per vertex normal

 Normals are expressed in cartesian coord
 Often

 But not always (∃ better ways to express unit vectors!)
 Question: ok, but in which space??? more later

3D video gaming - Marco Tarini
Univ Milano

2019-05-03

Texures part 2 11

Bump-Mapping see demo!

+ =

Low-poly mesh
(uv-mapped!)

Bump-map
(here: a

tangent space normal map)

lots of cheap
geometric detail

(apparently)

Low-poly mesh

assets courtesy of “Mount&Blade” (Talesworlds)

Bump-map

Normal Maps: in which space is the
normal encoded?

 Object space: Object-Space Normal-Maps
(The same in which I express the vertex pos)
  the per-vertex normal becomes unnecessary!

 The normal from texture substitute it
  Trivial to apply (during rendering)

 just use the normal fetched from the texture for lighting
  normal-map is bound to a specific object

 cannot be reused for different objects
  Each region of the normal map is bounded to

one specific area region of the object!
 Injective UV-maps only!
 e.g. no tiling, no exploitation of simmetries

3D video gaming - Marco Tarini
Univ Milano

2019-05-03

Texures part 2 12

Tangent space
(aka TBN space)

 A vector space defined ∀ point of the surface:
 Z axis: Normal

 orthogonal to surface
 X and Y axis: tangent vectors

 tangent to the surface
 X = Tangent
 Y = “Bi-Tangent”

(sometimes, but inappropriately: “Bi-Normal”)

 stored as per-vertex attributes
 interpolated inside faces
 Possible to optimze! Not necesessarly as 3 vectors

Tangent space
(aka TBN space)

 How to compute them?
 Normal

 as usual (see lec. on mesh)

 Tangent & Bi-Tangent
 Determined by the UV-map!
 T = gradient of U coord
 B = gradient of V coord.
 Implementation detail:

defined per face, averaged at vertices
 Notes:

 T,B can be not-exactly orthogonal
 T,B,N frame can be left-handed or right-handed (even in the same mesh)
 T has discontinuities  seams (vertex duplications)

 In first approximation, the same ones required by the UV-map (but non only! why?)

3D video gaming - Marco Tarini
Univ Milano

2019-05-03

Texures part 2 13

Normal Maps: in which space do is the
normal encoded?

 Tangent space: Tangent Space Normal-Maps
(the standard «bump-map», in games)
  extra attributes are needed per vertex:

 Normal direction
 Tangent direction
 Bitangent direction

  normal-map can be shared by different objects
  non injective UV-maps can be used

 e.g., the normal-map can be tiled
 e.g., simmetries can be exploited

  normal-map is independent from the mesh
 e.g. constructed from a displacement map w/o the mesh

The
tangent
space

basically, the normal map specifies how to
modify the per vertex normal instead of
replacing it

Mesh
GPU

Object

LOAD

Tangent Dirs (Tangent and Bitangent)
as per vertex attributes

DISK CENTRAL RAM GPU RAM

Mesh
Object

IMPORT

Mesh
File

PREPROCESS:
COMPUTE

TANGENT DIRS

WITH
TANGENT DIRS

(per vertex)

3D video gaming - Marco Tarini
Univ Milano

2019-05-03

Texures part 2 14

Normal-map:
strorage

 Idea: store it as a RGB texture
 R ↔ X
 G ↔ Y
 B ↔ Z

 but X,Y,Z ∈ [-1,+1] and R,G,B ∈ [0,+1]
thus a linear mapping is needed:

 Advantage: reuse compression of RGB textures/images
 Extra: store a (scalar) displacement map in 4th texture channel
 But, note: other, more efficient representations of versors exists

+1

-1

0

1.0

0.0

X∈ R∈ X = 2 R – 1
R = ½ (X + 1)

(normals are unit vectors)

Normal-maps:
Storage

 Examples of
tangent space
normal-maps

Prevailing normal : X=~0 , Y=~0 , Z=~1
⇒
Prevailing color: R =~0.5 , G=~0.5, B=~1

(~light blue)

3D video gaming - Marco Tarini
Univ Milano

2019-05-03

Texures part 2 15

Per e.g.: Tiled
(tangent space) Normal Maps

+ =

UV-mapping
(using tiling!)
Tangent dirs.

Tileable!

Low-poly mesh

assets courtesy of “Mount&Blade” (Talesworlds)

Normal-map

not possible with object-space NM!

Bump-maps assets at a glance
(can you tell which is which?)

Object Space
Normal map

Tangent Space
Normal map

Displacement
Map (scalar)

the default kind

3D video gaming - Marco Tarini
Univ Milano

2019-05-03

Texures part 2 16

Observe

Object Space
Normal map

1:1 UV-map
right leg != left leg

(Tangent Space)
Normal map

UV-mapping NOT injective
Exploited symmetries!

Left side of head = right side of head

Normal maps:
How are they obtained (1/4)

 From displacement maps!

Displacement map
come grayscale

= extruded - outwards

= deep – build in

Filter
(e.g.
photoshop)

2D texture
painter
/ etc

Normal map

see demo!

3D video gaming - Marco Tarini
Univ Milano

2019-05-03

Texures part 2 17

Normal maps:
How are they obtained (1/4)

 From: a scalar displacement map
To: a normal map

 Algorithm:
 ∀ texel t of displacement map

 note: for each texel corresponds a 3D point
(x , y , height[x,y])

 compute best fitting plane
 Plane minimizing the summed squared dist. of points in a 3x3 texel

patch around t
 Simple least-squares minimizatin problem

 The normal of this plane is the normal for t
 Note: The resulting normal map is relative to the texture

space obtained. Thus a tangent space normal map
 Cannot be done with object space normal map (w/o the model)!

or 5x5, or 7x7…

Normal maps:
how are they obtained (2/4)

 Photometric Stereo
 (a form of “inverse lighting”)

 from: N real images (N>=4)
 Same viewpoint
 Different illumination
 (possibly, controlled and known)

 a Normal Map
 in visual space!
 convert in object space, or TBN

3D video gaming - Marco Tarini
Univ Milano

2019-05-03

Texures part 2 18

Normal maps
how are obtained? (3/4)

 Normal-Painting on the model
 (e.g. with Z-brush, Sculptris Alpha…)
 Similar to a painting of diffuse maps

 but painting of geometric details

 similar to sculpting
 But the system directly writes the normals,

not the geometry

Normal maps
how are they obtained (4/4)

 Detail recovery
“detail texture” synthesis
baking of textures
 from:

 1) mesh Hi-Res
 2) mesh Low-res + UV mapping (without repetitions)

 to:
 Normal map for 2

(that mimics the detail present in 1)

3D video gaming - Marco Tarini
Univ Milano

2019-05-03

Texures part 2 19

Detail texture synthesis
(aka detail preservation)

 Idea:
 input:

 a low res mesh A,
with (injective) UV-map

 a hi-res mesh B
with per vertex attributes

 output:
a texture for A
capturing the vertex attributes in B
 normals? a normal map is produced

(in object space, convert to TBN if necessary)
 base color? a diffuse maps is produced
 baked (global lighting)? a light-map is produced

 fully automatic!

e.g.: A obtained from B
through automatic
simplification
…or…
B obtained from A with
digital sculpting

M a r c o T a r i n i ‧ [G A M E - D E V] ‧
V e r o n a ‧ 2 0 1 3

hi-res
mesh

low res
mesh

automatic
simplification

still low-res, but textured!

rendering

TEXTURE
Made up

(e.g.. BumpMap
normals or

RGB map x colors)

detail
recover

3D video gaming - Marco Tarini
Univ Milano

2019-05-03

Texures part 2 20

M a r c o T a r i n i ‧ [G A M E - D E V] ‧
V e r o n a ‧ 2 0 1 3

simplification
2K triangles

original
500K triangles

Simplified but with texture
2K triangles

Detail Recovery: how to

Hi-res
model

Low-res
model

Texture map

u

v

find a suitable spot

Some
attribute

e.g.: color,
precomputed shading,

normal...
Code & Store

find a suitable spot

3D video gaming - Marco Tarini
Univ Milano

2019-05-03

Texures part 2 21

Example

Example

3D video gaming - Marco Tarini
Univ Milano

2019-05-03

Texures part 2 22

Asset production pipeline (general concept)

 A sequence of stages used to produce assets. Each stage:
 what is produced
 starting from what
 using which tool(s), by which artist(s)
 storing which intermediate result (in which format), etc.

 Different pipelines for different classes of objects
 E.g. characters ≠ sceneries (“props”) ≠ equippable armours ≠ …
 Note: within a given game, all assets in a class are usually quite uniform

(comparable resolution, same set of textures, same formats, etc.)

 In the last few lectures, we mentioned a few possible steps
 concerning modelling and texturing (low poly modelling, uv-mapping…)
 missing: the parts about animations (skinning + rigging + animation…)
 missing: the parts about materials

 Identifying a good pipeline is not easy!

Asset production pipeline:
an example
 Concept drawings

 by a 2D artists
 Low-poly model A

 by a 3D modeler, using low-poly editing tools
 UV-mapping of A

 by a UV-mapper, or by automatic tool. output: an injective UV-map of A
 Subdivision, then digital sculpting of Hi-Res model B

 by a 3D modeler, using digital sculpting tools
 Painting over B

 using 3D painter, producing per-vertex colors
 Detail Recovery:

 Automatic construction of three Textures for A with attributes from B:
 Normals from B, (produces a normal map)
 Colors from B (produces a diffuse map)
 Baked lighting from B (produces a light-map)

