
Marco Tarini - Univ Milano 2019-05-06

3D video games 2018/2019
Animations Part 1 1

3D games 2018/2019
Unimi

Animations in games

Marco Tarini

Types of animations in games

1. of rigid objects
 animate modelling transformations

(6 DoF per object)

Marco Tarini - Univ Milano 2019-05-06

3D video games 2018/2019
Animations Part 1 2

Types of animations in games

1. of rigid objects
 or objects made of rigid sub-parts

Types of animations in games

2. Free-Form deformations
 generic transformations of the object

Marco Tarini - Univ Milano 2019-05-06

3D video games 2018/2019
Animations Part 1 3

Types of animations in games

3. of articulated models
 internal skeleton

 most virtual characters!

 “skinning”

Types of animation
and DoF (per keyframe)

Rigid

Articulated

Free form

6 DoF per object
(or, e.g., 9, with anisotropic scaling)

~50-100 DoF per object
(e.g. 3 DoF per joint x 25 joints)

300-10.000 DoF per object
(e.g. 3 per-vertex)

DoF =
Degrees
of Freedom

Marco Tarini - Univ Milano 2019-05-06

3D video games 2018/2019
Animations Part 1 4

Animations in games

 a

 a

 Assets!

 Control: easy.
full control by artists
(e.g. for dramatic fx)

 Realism: hard
it’s up to the artist skill

 Flexibility: little
Doesn’t adapt to env.

 (consumes RAM)

 a

 a

 Physic engine

 Control: hard

 Realism: easy
built-in physical laws

 Flexibility: great
Adapts to env / contexts

 (consumes GPU)

ProceduralNon procedural

Animations in games

 Or… a mix
 ex1: primary animations: scripted

secondary animations: computed

 ex2: alive characters: scripted
dead characters: computed (ragdolls)

 and more

 a frontier in CG and Interactive techniques!

Marco Tarini - Univ Milano 2019-05-06

3D video games 2018/2019
Animations Part 1 5

Summary:
Types of scripted animations

 of objects made of rigid subparts
 including joints: robots, cars…
  “forward kinematics animations”

(dynamic changes of modelling transform)

 of deformable articulated objects
 with some internal skeleton
 e.g: most virtual characters:

humans / animals / monsters / anything in between
  “skinning” / “rigging”

 of generic deformable objects
 e.g. faces, an umbrella, stuff with membrane…
 “per-vertex animations” / “blend shapes” / “morph targets”

A digression on terminology

 The opposite of “procedural”,
depending on the context, can be…
 baked : ‘pre-cooked’, ‘frozen’ into an asset,

(when it was produced procedurally)
 asset : stored as an asset (irrespective of origin),

that is, read from the disk (or streamed from web)
 scripted : stored as a (simple!) script

(but, the procedure to create something can well be a script!
e.g. “this script procedurally generates a level”)

 (manually) designed / edited : made by an artist
(as opposed to: by a program)

 (fully) simulated : the output of a (complex!)
simulation

Marco Tarini - Univ Milano 2019-05-06

3D video games 2018/2019
Animations Part 1 6

Animations in games
(of 3D Solid Objects)

ProceduralNon Procedural

Rigid

Articulated

Free form

Skeletal
Animations

Blend-Shapes

Rigid body
dynamics

Pre-made
transforms

(ASSETS) (PHYSIC ENGINE / ETC)

Ragdolling
Inverse

kinematics

(generic)
deformable object

simulation
usually

too expensive

Cloth/
garments

Ropes

(ASSETS) (PHYSIC ENGINE / ETC)

Animations in games
(of 3D Solid Objects)

ProceduralNon Procedural

Rigid

Articulated

Free form

Skeletal
Animations

Blend-Shapes

Rigid body
dynamics

Ragdolling
Inverse

kinematics

(generic)
deformable object

simulation
usually

too expensive

Cloth/
garments

Ropes

Pre-made
transforms

Marco Tarini - Univ Milano 2019-05-06

3D video games 2018/2019
Animations Part 1 7

Scene graph

TR0
TR1

TR2

TR3 TR4 TR5 TR6

positioning
of the car

(in relation
to the world)

positioning
of the wheel
(in relation
to the car)

Animated Scene graph…
(“kinematic” animations)

TR0
TR1

TR3 TR4 TR5 TR6

positioning
of the car

(in relation
to the world)

positioning
of the wheel
(in relation
to the car)

Time: t0 t1 t2 t3 t4

Trasform: TR0 TR1 TR2 TR3 TR4

Marco Tarini - Univ Milano 2019-05-06

3D video games 2018/2019
Animations Part 1 8

Kinematic animations:
how?

 way 1:
 just scripting

 way 2:
 editing in a animation software

 cinema 4D, blender, 3D max, …

 (including use of I.K. as part of the interface)

 export animation
 as a sequence of keyframes

 File formats: collada, fbx, …

asset:
the script

asset:
the animation

Time: t0 t1 t2 t3 t4

A==>B: TR0 TR1 TR2 TR3 TR4

B==>C: TR0 TR1 TR2 TR3 TR4

DEMO
!

Interpolating keyframes
(applies to all kinds of animations)

 Keyframes
+
interpolation

keyframe A keyframe B
0.5 ∙ keyframe A

+
0.5 ∙ keyframe B

Marco Tarini - Univ Milano 2019-05-06

3D video games 2018/2019
Animations Part 1 9

Interpolating keyframes
(applies to all kinds of animations)

 The animator authors:
 a set of keyframes
 each with an associated time

 Status of the ani at any other frame:
interpolation between keyframes
 saves artist work
 saves storage

 note: keyframes distribution can be adaptive
 concentrate keyframes where needed / not linear

“timeline”

key-frames

Keyframe interpolation
(for kinematic animations)

time A = 100

time B = 200

time curr. = 150?
keyframe A

keyframe B

TA

TB

Ti = ?

interpolated

* Ti = mix(TA, TB, 0.5)

*

Marco Tarini - Univ Milano 2019-05-06

3D video games 2018/2019
Animations Part 1 10

Animations in games
(of 3D Solid Objects)

ProceduralNon-Procedural

Rigid

Articulated

Free form

Skeletal
Animations

Blend-Shapes

Rigid body
dynamics

Pre-made
transforms

Ragdolling
Inverse

kinematics

(generic)
deformable object

simulation
usually

too expensive

Cloth/
garments

Ropes

(ASSETS) (PHYSIC ENGINE / ETC)

Asset for free-form animations:
Blend shapes

 A.K.A:
 Blend shapes

 Per-vertex animations

 Vertex animations

 Face morphs

 Shape keys

 Morph targets

 …
BARRY BLITT (THE NEW YORKER)

Marco Tarini - Univ Milano 2019-05-06

3D video games 2018/2019
Animations Part 1 11

Blend shapes: concept

 Animation in 2D (old school):
a sequence of sprites

 Animation in 3D:
a sequence of meshes?

Walk cycle
(Monkey Island
LucasArt 1991)

Reminder:
representation of a mesh

 Indexed mode :
 Geometry: array of vertices position

 Attributes:
 stored at vertices

 Connectivity:
 Array of triangles (or polygons)

 Each triangle:
 a triplet of indexes to vertice

Marco Tarini - Univ Milano 2019-05-06

3D video games 2018/2019
Animations Part 1 12

Blend shapes
(as a data structures)

connectivity (indexed)

Tri:
Wedge

1:
Wedge

2:
Wedge

3:

T1 V4 V1 V2

T2 V4 V2 V5

T3 V5 V2 V3

Vert: Pos

V1 (x,y,z)

V2 (x,y,z)

V3 (x,y,z)

V4 (x,y,z)

V5 (x,y,z)

geometry:

UV Col

(u,v) (r,g,b)

(u,v) (r,g,b)

(u,v) (r,g,b)

(u,v) (r,g,b)

(u,v) (r,g,b)

attributes:

V2

V3

V5

V4

V1

T1

T2
T3

Blend shapes
(as a data structures)

connectivity (indexed)

Tri:
Wedge

1:
Wedge

2:
Wedge

3:

T1 V4 V1 V2

T2 V4 V2 V5

T3 V5 V2 V3

Vert:
Base

Shape
Shape

1
Shape

2 …

V1 (x,y,z) (x,y,z) (x,y,z) …

V2 (x,y,z) (x,y,z) (x,y,z) …

V3 (x,y,z) (x,y,z) (x,y,z) …

V4 (x,y,z) (x,y,z) (x,y,z) …

V5 (x,y,z) (x,y,z) (x,y,z) …

geometries:

UV Col

(u,v) (r,g,b)

(u,v) (r,g,b)

(u,v) (r,g,b)

(u,v) (r,g,b)

(u,v) (r,g,b)

attributes:

V2

V3

V5

V4

V1

T1

T2
T3

V2

V3

V5

V4

V1

T1
T2 T3

V2 V3

V5

V4

V1

T1

T2

T3

Marco Tarini - Univ Milano 2019-05-06

3D video games 2018/2019
Animations Part 1 13

Blend shapes

 A mesh with several associated geometries

 I.e. a sequence of meshes (‘shapes’) with
 shared connectivity
 shared attributies

 (except maybe normals / tangents)
 different geometries
 (and shared textures as well)

 Variants (they are equivalent):
 Relative mode:

 base shape: explicitly stored as points
 any other shape: as vectors: difference with base shape

 Absolute mode:
 each shape independently stored as points

or ‘morph’
or (key)-‘frame’
or ‘shape-key’

Blend shapes
(as a data structure, e.g. C++)

 Indexed mesh :

class Vertex {
vec3 pos;
rgb color;
vec3 normal;

};

class Face{
int vertexIndex[3];

};

class Mesh{
vector<Vertex> vert; /* geom + attr */
vector<Face> tris; /* connectivity */

};

Marco Tarini - Univ Milano 2019-05-06

3D video games 2018/2019
Animations Part 1 14

Blend shapes
(as a data structure, e.g. C++)

 Indexed mesh :

class Vertex {
vec3 pos [N_SHAPES] ;
rgb color;
vec3 normal [N_SHAPES] ;

};

class Face{
int vertexIndex[3];

};

class Mesh{
vector<Vertex> vert; /* geom + attr */
vector<Face> tris; /* connectivity */

};

Blend-shapes:
most common file formats

 Simple:
 .MD5 (“quake”, valve)

 or, just a sequence of meshes (es .OBJ)
 making sure connectivity is coherent!

(vertex ordering = the same)

 Complex:
 .DAE (Collada)

 .FBX (Autodesk)

Marco Tarini - Univ Milano 2019-05-06

3D video games 2018/2019
Animations Part 1 15

Interpolation between shapes

 Interpolating just the geometry:

 with assolute BlendShapes :
shapeA ȉ wA + shapeB ȉ wB

 with relative BlendShapes:
shapebase + delta_shapeA ȉ wA + delta_shapeB ȉ wB

 with: 0 ≤ wA ≤ 0
0 ≤ wB ≤ 1
wA + wB = 1

Uses of Blend-Shapes

shape A shape B

(shapes = facial expressions)

Marco Tarini - Univ Milano 2019-05-06

3D video games 2018/2019
Animations Part 1 16

Uses of Blend shapes

 Temporal sequences
 shapes = keyframes

Use of Blend shapes

 Temporal sequences
 shapes = keyframes

Marco Tarini - Univ Milano 2019-05-06

3D video games 2018/2019
Animations Part 1 17

Use of Blend shapes
as temporal sequences

 Shapes == keyframes of the animation

 shapeA with time tA

 shapeB with time tB

 shapeC with time tC

 shapeD with time tD

 current time: t with tB < t < tC

 interpolate betw. shapes: …

 weights : …
shapeB , shapeC

wB=
௧ି௧಴

௧ಳି௧಴
wC = 1 − wB =

௧ି௧ಳ

௧಴ି௧ಳ

Use of Blend shapes
as temporal sequences

 Shapes == keyframes of the animation

 shapeA with time tA

 shapeB with time tB

 shapeC with time tC

 shapeD with time tD

 current time: t with tB < t < tC

 interpolate betw. shapes: …

 weights : …
shapeB , shapeC

wB= 𝑓
௧ି௧಴

௧ಳି௧಴
wC = 𝑓

௧ି௧ಳ

௧಴ି௧ಳtransition function

Marco Tarini - Univ Milano 2019-05-06

3D video games 2018/2019
Animations Part 1 18

Transition functions

 Not necessarily
the Linear one

1

1

𝑥

𝑓(𝑥)

linear

𝑓 𝑥 = 𝑥

(general concept,
applies to all animation types)

Transition functions

NB:  extrapolation !
( exaggeration)

(general concept,
applies to all animation types)

 Not necessarily
the Linear one

1

1

𝑥

𝑓(𝑥)

linear

𝑓 𝑥 = 𝑥

Marco Tarini - Univ Milano 2019-05-06

3D video games 2018/2019
Animations Part 1 19

Uses of Blend shapes

 Facial animations
 (one of the commonest uses)

Here together with skeletal animations (see later)
(mandible, neck, eyeballs)

Usi delle Blend shapes

 Facial animations
 (one of the commonest uses)

Here together with skeletal animations (see later)
(mandible, neck, eyeballs)

Marco Tarini - Univ Milano 2019-05-06

3D video games 2018/2019
Animations Part 1 20

Interpolation between more
than two shapes

 Blending the shapes:
 Absolute:

shapeA ȉ wA + shapeB ȉ wB+ shapeC ȉ wC + …

with:
0 ≤ wA,B,C, … ≤ 1

wA + wB + wC + … = 1

 Relative:
shapebase + shapeA ȉ wA + shapeB ȉ wB + shapeC ȉ wC + …

or maybe not (extrapolation).
Useful for…

Marco Tarini - Univ Milano 2019-05-06

3D video games 2018/2019
Animations Part 1 21

Marco Tarini - Univ Milano 2019-05-06

3D video games 2018/2019
Animations Part 1 22

Using facial animations as
Blend shapes: pipeline

 3D Modeller authors:
the set of blend-shapes

 Animator (of expressions) picks:
weights
 eg.: with sliders

 assisted / substituted by automatisms
 lip sync

 dynamically determined expressions

 Keyshape Blending: by rendering engine

[VIDEO]

Uses of Blend-Shapes

 Set of useful/typical physical configurations

 Baked poses

Marco Tarini - Univ Milano 2019-05-06

3D video games 2018/2019
Animations Part 1 23

Uses of Blend-Shapes

 Variants of one give objects
 (mixable!)

masculine outfit feminine outfit

Uses of Blend-Shapes

 Variants of one give objects
 (mixable!)

huamn orc goblin dwarf

Marco Tarini - Univ Milano 2019-05-06

3D video games 2018/2019
Animations Part 1 24

Uses of Blend-Shapes

 Defines shapes of a class of objects
 get a shape in the class = just choose the weights

 3D modelling at an high-level of abstraction
 the weights “span” one shape space

 one given shape = one point in the space
 weights = coords

 the space is the more useful the more:
 all and only the reasonable shapes

are represented in the space

 Typical Example: face morphologies
 “face-space”
 note: face morphology ≠ facial expression

Uses of Blend shapes
 A blend shape modelling a face space (“face-morphs”)

[DEMO]

Marco Tarini - Univ Milano 2019-05-06

3D video games 2018/2019
Animations Part 1 25

What a blend shape
cannot do

 Change connectivity
 eg. change res, remeshing

 Change topology
 breaking apart, fusing parts

 Change attributes
 (eg color…)

 Change textures
 Use a texture animation instead, maybe?

Blend shapes:
authoring

Manual authoring:
1. Editing base shape

 including:
uv-mapping, texturing, etc.

2. Re-edit it
for each shape-key!
…while preserving:
connectivity,
textures, etc
 low poly editing

 or with subdivision surfaces…

 or with parametric surfaces…

 or with scupting.

Marco Tarini - Univ Milano 2019-05-06

3D video games 2018/2019
Animations Part 1 26

Blend shapes:
authoring

 Handbook for
blend-shape based
face animation:
 “Stop Staring”

(3d edition)
Jason Osipa

 Covers: style,
expression…

 Non technical
(high level)

 Not about specific tools
e.g. Blender, Maya

Blend shapes:
hot to obtain them

 Capture:
 3D acquisition of base shape B0

 (including: simplification, remeshing, uv-mapping, etc)

 capture subsequent shapes B1, B2…
 e.g. real-time (kinect), o 3D scanning for each shape

 compute a morph B0 => B1
 “non rigid mesh alignment”

[VIDEO]

Marco Tarini - Univ Milano 2019-05-06

3D video games 2018/2019
Animations Part 1 27

Blend shapes:
pro and con

  Flexible, expressive, huge number of DOF…
too much?

  RAM cost
  Work intensive

to construct

  Easy to use / efficient, once they are built
 just define global weights

(but, not as bad as old sprites,

because (1) sharing of
connectivity, textures, attributes
(2) keyframes / interpolation!

Blend shapes:
open challanges

 Capturing from a stream of meshes

 Compression
 eg: prediction + store corrections + Huffman

 Streaming

 LOD-ding

Marco Tarini - Univ Milano 2019-05-06

3D video games 2018/2019
Animations Part 1 28

Animations in games
(of 3D Solid Objects)

ProceduralDesigned / scripted

Rigid

Articulated

Free form

Skeletal
Animations

Blend-Shapes

Rigid body
dynamics

Pre-made
transforms

Ragdolling
Inverse

kinematics

(general)
deformable object

simulation
usually

too expensive

Cloth/
garments

Ropes

(ASSETS) (PHYSIC ENGINE / ETC)

Step by step…

Kinematic animations

(global)
world space

wheel _1
objects space

car1
object space

wheel_2
object space

car2
object space

t0

t1

Marco Tarini - Univ Milano 2019-05-06

3D video games 2018/2019
Animations Part 1 29

Step by Step…

Kinematic animatios

T0
T1

T1,1 T1,2 T1,3 T1,4

positioning of
car 1

(w.r.t. the world)

positioning.
of wheel 1.1
(w.r.t. car1)

world
space

ca
r1

ob
je

ct
sp

ac
e

w
he

el
1.

1
ob

je
ct

sp
ac

e

time

t0 T1 T1,1 T1,2 T1,3 T1,4 …

t1 T1 T1,1 T1,2 T1,3 T1,4 …

t2 T1 T1,1 T1,2 T1,3 T1,4 …

trasformation

Animation:

An animated
robot… T

T0
T1

T2

T4 T6

Robot
(pelvis)

world
space

spine1

left
thigh

right
thigh

right
shoulder

left
shoulder

right calf
spine2

T3

T7

right
foot

T8T5

neck

bones

“root” bone

Local tranformf
(“from foot to calf”)
Gobal transform

(“from foot to robot”) is:
T2xT7xT8

Marco Tarini - Univ Milano 2019-05-06

3D video games 2018/2019
Animations Part 1 30

Step by step…

From a bunch of pieces…

 So far: one mesh in each “bone”
 (e.g., car-cockpit, car-wheel)

 Ok, for simple structure
 (like a car, a windmill…)

 What about a humanoid “robot” with 25-60
“bones”?
 Individual meshes for arms, forearms, legs…

three meshes for each finger?
 Possible, but…

 inefficient to render (many “draw calls”)
 uneasy to manage (lots of files?)
 a nightmare to design / author

(“sculpt me a nice looking calf”)
 and… looks right only for robots (each object rigid!)

… to articulated models…

 Idea: one mesh, but skinned
 1 mesh per the entire character
 a new attribute per vertex: index of bone
 the 3D model can now be animated!

 Orthogonality models / animations!
 that is:

 one skinned mesh: runs with any animations
 one skeletal animation: can be appliecable to any model

 (as long as they use the same RIG – set of bones)
 500 models + 500 animations = 1000 things in GPU RAM

 not: 500x500 combinations

 The tasks required from digital artists:
 “rigging”: define the skeleton inside the mesh (riggers)
 “skinning”: define vertex-to-bone links, i.e. the skinning (skinners)
 “animation”: define the actual animations(animators)

“Skinning”
of the mesh

(1st version).

Marco Tarini - Univ Milano 2019-05-06

3D video games 2018/2019
Animations Part 1 31

Rig (or skeleton):
data structure 1/2

 A tree of bones
 bone:

 Vectorial frame (space) used to express
pieces of the animated model

 eg, for a humanoid: forearm, calf, pelvis, …
 (rigging bone != biological bones)

 Space of the root bone =(def)= object space
(of the entire character)

 How many bones in a skeleton of a humanoid:
at least: 22-24 (typically)
reasonable: ~40 bones.
very high: few 100s

Pose:
data structure

One trasformation
for each bone i
 Local transform: (of bone i)

 from: space of one i

 to: space of bone father of i

often, only the
rotation

component

(“fixed length bones”:
translations defined

once and for all
by the skeleton)

Marco Tarini - Univ Milano 2019-05-06

3D video games 2018/2019
Animations Part 1 32

Rig (or skeleton):
data structure 2/2

1. Hierarchy (tree) of bones
 a root bone on top

2. A special pose «rest pose»
 3D models are to be

modelled in this pose

 also: «T-pose», «T-stance»,
 same resason why T-shirts are called T-shirts ;)

From Rest Pose
to a given pose

pelvis
(root)

spine 1

left
shoulder

right
shoulder

R2

R4 R6

right
legleft

leg

right
calf

spine 2

R3 R7

right
foot

neck

R5 R8

R3R1

pelvis
(root)

spine 1

left
shoulder

right
shoulder

P2

P4 P6

right
legleft

leg

right
calf

spine 2

P3 P7

right
foot

neck

P5 P8

P3P1

pose Xrest pose

Marco Tarini - Univ Milano 2019-05-06

3D video games 2018/2019
Animations Part 1 33

From Rest Pose
to a given pose

pelvis
(root)

spine 1

left
shoulder

right
shoulder

R2

R4 R6

right
legleft

leg

right
calf

spine 2

R3 R7

right
foot

neck

R5 R8

R3R1

pelvis
(root)

spine 1

left
shoulder

right
shoulder

P2

P4 P6

right
legleft

leg

right
calf

spine 2

P3 P7

right
foot

neck

P5 P8

P3P1

final trans for foot, from rest pose to pose X = P2 P7 P8 (R2 R7 R8)-1 = P2 P7 P8 (R8)-1(R7)-1 (R2)-1

pose Xrest pose

same assame assame as

Posa:
struttura dati

Una trasformazione
associata ad ogni bone i
 Trasformazione locale: (del bone i)

 da: spazio osso i
 a: spazio osso del padre di i
 utili per costruire la posa

 Trasformazione globale: (del bone i)

 da: spazio osso i nella posa data
 a: spazio osso root nella posa data

 Trasformazione finale: (per il bone i)

 da: spazio root nella rest pose
 a: spazio root nella posa data (di destinaz)
 utili per applicare la posa alla mesh

a volte, solo la
componente
“rotazione”

(“ossa non
estendibili”:

estensione ossa def.
nel rig, costante
su tutte le pose)

definita
nel rig

Marco Tarini - Univ Milano 2019-05-06

3D video games 2018/2019
Animations Part 1 34

Bone transforms in a pose.
E.g. for «right foot» bone:

 Local Transform: P8
 from «right foot» to «right lower leg»

 Global Transform: P2 P7 P8

 from «right foot» to «character»
 uses the Hierarchy of the Skeleton

 once global t are computed, Hierarchy’s no longer needed!

 Final Transform: P2 P7 P8 R8-1 R7-1 R2-1

 from «character» in rest pose
to «character» in dest. pose

 uses the Rest Pose of the Skeleton (R1 … RN)
 once it’s computed, Rest Pose no longer needed either!

the object frame
of the character,
i.e. the frame of
the root bone

the space where mesh
vertices are defined!

Pose (for a given rig) :
data structure
 pose = array of (local) transforms

 it’s defined for one given rig

 RAM cost: n_bones x bytes_for_a_tranform

Osso i Trasform[i]

#0 (pelvis) [root] L[0]

#1 (spine) L[1]

#2 (chest) L[2]

#3 (shoulder sx) L[3]

… …

#10 (calf) L[10]

… …

Local Transform
It includes:
• a Rotation: always!
• a Translation: maybe

If not, use the one defined in
the rest pose of the rig.
==> a pose cannot
redefine bone lengths.

• a Scaling: maybe
If not ==> a pose cannot redef
the size of the body part.

Marco Tarini - Univ Milano 2019-05-06

3D video games 2018/2019
Animations Part 1 35

Pose (for a given rig) :
data structure in GPU
 pose = array of final transforms

 it’s defined for one given rig

 RAM cost: n_bones x bytes_for_a_tranform

Osso i Trasform[i]

#0 (pelvis) [root] F[0]

#1 (spine) F[1]

#2 (chest) F[2]

#3 (shoulder sx) F[3]

… …

#10 (calf) F[10]

… …

computed in preprocessing e.g. as:
L[2] L[7] (R[7])-1 (R[2])-1

final
transforms

local transforms
of this pose

local transforms
of rest pose

Skeletal Animation :
data structure (CPU or GPU)

 1D Array of poses (the keyframes of the ani)

 RAM cost:
(num keyframes) x (num bones) x (transform size)

 Each pose assigned to time dt
 delta from start of animation t0

 Sometime, looped
 interpolation 1st keyframe with last

