
Marco Tarini
Università degli Studi di Milano

2019-05-28

3D video games 2018/2019
AI for 3D games (brief) 1

3D VideoGames 2018/2019
Università degli Studi di Milano

Artificial Intelligence
in 3D Games

Marco Tarini

Game Engine

 Handling common task of a game dev
 Game logic (levels)
 Renderer

 Real time transoform + lighting
 Models, materials …

 Physics engine
 (soft real-time) newtonian physical simulations
 Collision detection + response

 Networking
 (LAN)

 Sounds (mixing and “sound-rendering”)
 Handling input devices
 Main event loop, timers, windows manager…
 Memory management
 Artificial intelligence module

 Solving AI tasks
 Localization support
 Scripting
 GUI (HUD)

Animations
scripted or computed

1

2

Marco Tarini
Università degli Studi di Milano

2019-05-28

3D video games 2018/2019
AI for 3D games (brief) 2

AI / ML
in the real world

 Huge advancement in recent years!
 e.g with deep learning

 (neural networks… refurbished)!
 huge increase of manageable data size
 very low level features used straight as input

 e.g. in data mining
 e.g. in computer vision

 Reasons:
 algorithm breakthroughs
 computational power!!!

 e.g. GP-GPU

AI in games.
Main use: NPC behavior
Widely different AIs for widely different “NPC”s!
 A wild animal
 An (enemy) soldier
 A squad leader
 An (innocent) villager / bystander
 An individual in a crowd / flock / herd
 A racing car driver
 A spaceship pilot / gunner
 A companion / buddy
 An (enemy) commander
 A zombie
 A heat seeking missile
 A WWII ace pilot
 …

use
“flocking algorithms”

(or “crowd simulation”)

the AI player
in a RTS

3

4

Marco Tarini
Università degli Studi di Milano

2019-05-28

3D video games 2018/2019
AI for 3D games (brief) 3

AI in games:
other uses
 Procedural… anything

 terrain
 levels

 e.g. maze generation, generation of (solvable!) puzzles…
 music, models, etc!

 Dynamic difficulty tuning
 learning when/how to increase/decrease difficulty
 virtual “movie director” concept

(e.g.: “time to intensify action: spawn more zombies”
/ “time to slow down pace: spawn less zombies”)

 Ranking
 algorithms to estimate rank of players, from game outcomes

(e.g. in chess / go communities)
 An intelligent tutor / advisor

 e.g. an non-intrusive game tutorial
telling players only what they (seem to) need to hear

 …

e.g. look up
“Sokoban”

AI in games:
another (future) use
One promising emerging methodology:
 Procedural Character Animations

 i.e. “learn how to run, walk, stand up, …”
 Input:

 a character body: skeleton structure,
with “muscle” actuator
 muscle = springs with AI-controlled strengths

 a given task, e.g.
 go as fast as possible in this direction
 stand up from prone position
 reach the highest possible point (i.e. jump)
 …

 Output:
 how to activate muscles to do it
 (minimizing used energy)

 How:
 genetic algorithms, Evolution strategies
 physical simulation to score candidates

skeletal animations

rig

trivial to
measure
(score)

5

6

Marco Tarini
Università degli Studi di Milano

2019-05-28

3D video games 2018/2019
AI for 3D games (brief) 4

“AI” for NPC behavior:
Interactive Agents (IA)

 Some difference with real AI:
 “cheating” completely possible

 e.g. info “magically” available to the Interactive Agent
 real-time response always needed

 very frequent decisions of the Interactive Agent (30-60 Hz!)
 “on-line”, and “soft real time”

 sub-optimal often required

 NPC behavior also determined by:
 story telling needs

 e.g. follow designed behavior, adhere to designed personality
 difficulty tuning (e.g. with enemy NPCs)
 need to interesting / fun (=/= optimal!)
 need to be realistic / believable

 (not necessary, coherent / logical / optimal)

Game AI vs AI to solve Games

In a word:
entertainment, not problem solving !

to find more about AI to (optimally) play games,
look for:

 min-max algorithms (with pruning)
 algorithms to solve

complete knowledge, turn based games
 Nash equilibrium (from Game Theory)

 solution concept to address
non cooperative games

7

8

Marco Tarini
Università degli Studi di Milano

2019-05-28

3D video games 2018/2019
AI for 3D games (brief) 5

EN
VIRO

N
M

EN
T

Intelligent Agent
Interactive Agent (Believable Agent)

INTERACTIVE
AGENT

EN
VIRO

N
M

EN
T

EN
VIRO

N
M

EN
T

Intelligent Agent
Interactive Agent (Believable Agent)

EN
VIRO

N
M

EN
T

SEN
SE

TH
IN

K

ACT

9

10

Marco Tarini
Università degli Studi di Milano

2019-05-28

3D video games 2018/2019
AI for 3D games (brief) 6

EN
VIRO

N
M

EN
T

Intelligent Agent
Interactive Agent (Believable Agent)

EN
VIRO

N
M

EN
T

SEN
SE

TH
IN

K

ACT

EN
VIRO

N
M

EN
T

Intelligent Agent
Interactive Agent (Believable Agent)

EN
VIRO

N
M

EN
T

SEN
SE

TH
IN

K

ACT

11

12

Marco Tarini
Università degli Studi di Milano

2019-05-28

3D video games 2018/2019
AI for 3D games (brief) 7

Controls and Agent
(an useful abstraction)

scenario: Single Player

Player
Player Agent

NPC Agent

virtual environmentvirtual environment

AI

EN
VIRO

N
M

EN
T

Interactive Agent

EN
VIRO

N
M

EN
T

SEN
SE

TH
IN

K

ACT

13

17

Marco Tarini
Università degli Studi di Milano

2019-05-28

3D video games 2018/2019
AI for 3D games (brief) 8

Acts
(in robotics, by “Actuators”. In games?)

 Produce “Controls”
 associated to the NPC character
 a non-cheating AI controlled NPC (simulation of a player)

 Animations
 Movements / displacements
 Sounds

 voices, yells
 Orders (issued to other agents)

 (e.g. in a RTS)
 Effects on game logic

 e.g. objects appearing, doors unlocking,
HP decreased / healed, money spent / gain, etc

EN
VIRO

N
M

EN
T

Interactive Agent

EN
VIRO

N
M

EN
T

SEN
SE

TH
IN

K

ACT

18

19

Marco Tarini
Università degli Studi di Milano

2019-05-28

3D video games 2018/2019
AI for 3D games (brief) 9

Sensing
(in robotics, by “Sensors”. In games?)

 Gather info (“percepts”)
 which will be used for the “think” phase
 NB: this info must often persist in the “mind” of the agent!

 more abut this in the next phase
 Performed at regular intervals, or “on demand” (by the AI)
 Simulating senses in a 3D world…

 Sight
 way1: ray-casting

 (uses ray-VS-hitbox collision)
 way2: synthetize then analyze probe renderings! (accurate, expensive)

 Hearing, Smell
 simple testing against influence sphere

 Touch / Proximity sensing:
 collision detection / spatial queries

 …or “cheating” (common)
 “magically” sensing data straight from the game status
 (simple, and often ok – when plausibility not compromised too much)

e.g. the scene
graph

Simulating senses
in a 3D environment

Sound wave

Occluded

Unoccluded

Sight Hearing

20

21

Marco Tarini
Università degli Studi di Milano

2019-05-28

3D video games 2018/2019
AI for 3D games (brief) 10

EN
VIRO

N
M

EN
T

Interactive Agent (IA)
EN

VIRO
N

M
EN

T

SEN
SE

TH
IN

K

ACT

Thinking phase
(aka planning)

 Status of the AI: modeling the “AI-mind”
 current goals

 hi-level, low-level… (more about this later)
 internal model of the environment (as perceived by IA)

 built through the sensing phase
 occasionally, also obtained

from (simulated) communication with other NPCs
 can be arbitrarily complicated, or very simplistic

 moods/mindsets
 internal values modelling the varying lvl of:

fear, patience, rage, distress, confidence,
hunger/thirst, fondness toward player, etc

 persistence of these mind elements
can be made more or less prolonged
 e.g. deleted, to model agent forgetfulness
 e.g. deleted, to reflect awareness that data went stale

22

23

Marco Tarini
Università degli Studi di Milano

2019-05-28

3D video games 2018/2019
AI for 3D games (brief) 11

Thinking phase
(aka Planning)

 Typically, Hierarchical Logic
 Hi-level Decisions => Hi-Level Goals

 update: not very often

 …
 Lower-level Goals

 update: more often

 …
 Lowest-level Goals

 solving low level tasks

 Acts!

such as…

Examples of common
lowest level tasks (1/2)

 Face towards something
 tip: remember atan2
 actions: turn left or right

 Aim a weapon
 e.g. including “walking the target”

 i.e. aim at where target will be
at time of impact

 e.g. including ballistic
 (to predict, use analytical physics: pos(t) = f(t))

 Avoidance / dodging
 of an incoming bullet

 …

vec3 target_pos = target.pos;

float target_dist = dist(me.pos , target_pos);
float eta = target_dist / bullet_speed;
target_pos = target.pos + target.vel * eta;

face_towards(target_pos);repeat a few times
(converges really fast)

24

25

Marco Tarini
Università degli Studi di Milano

2019-05-28

3D video games 2018/2019
AI for 3D games (brief) 12

Often easier to think in local object
space of the IA

T

T

-1

World space agent object space

Common lowest level tasks 2/2:
Path finding

 Path finding
 Dijkstra’s algorithm ?
 A* search!

26

27

Marco Tarini
Università degli Studi di Milano

2019-05-28

3D video games 2018/2019
AI for 3D games (brief) 13

Dijkstra algorithm
and A* search

(part of the background, not of this course)

if you are not familiar with them,
please do look them up!

Dijkstra algorithm:
notes
 input:

 graph (nodes, arches)
 nodes = locations where IA can be
 arches = path to go from node A to node B, such as…

 straight line paths A to B (to be run / walked)
 a potential jump reaching B from A
 drop down from A to B (note: arches are not necessarily symmetric!)

 a (positive!) cost, associated to each arch
 e.g. estimated time to go from A to B
 in general, willingness of the IA to pass through there
 flexible! easy to adapt costs to reflect specific scenarios, e.g.:

 “that path is vulnerable to enemy shooting”: higher cost
 “that path is across lava. It hurts! (costs HP)”: higher cost
 “that path occludes friendly fire lines”: higher cost
 “I risk being spotted on that path (I don’t want to be seen)”: higher cost

 Start node and Destination node(s)
 output:

 path from Start to Dest
 guaranteed to be the minimal-cost path

28

29

Marco Tarini
Università degli Studi di Milano

2019-05-28

3D video games 2018/2019
AI for 3D games (brief) 14

A* algorithm: (“A-star”)
notes
 Dijkstra not efficient enough

 visits too many nodes
 explores paths which are obviously wrong

 (greedy, only guided by distance from Start)
 A* variation. Main idea:

smarten up! with an estimate of the remaining distance to Dest
 function H(node x):

an estimate of the minimal cost to go from x to Dest
 H is user provided
 must be: fast (constant time, possibly)
 must be: strictly optimistic!

produced estimations AT MOST the real cost (never more)
– underestimation ok, overestimation NOT OK

 good example: simple Euclidean distance (disregarding obstacles!)
 Output: still the optimal path

 as long as the estimator never overestimates costs
 the better the estimations, the quickest the algorithm

 eg: estimation always 0 (technically correct): same as Dijkstra
 eg: perfect estimation (hypothetical case): only explore nodes in optimal path

Which graph to use
for A* / Dijkstra in a 3D game?
 Answer: Nav-meshes (“Navigation meshes”) or AI meshes

 a polygonal mesh
 faces: graph nodes

(places where
the NPC can stand)

 edges between faces:
graph arches
(passage the NPC
can traverse)

30

31

Marco Tarini
Università degli Studi di Milano

2019-05-28

3D video games 2018/2019
AI for 3D games (brief) 15

Nav Mesh (manually designed)

Baking a 3D Nav-Mesh

 Input:
 the scene graph
 static 3D collision proxies in its nodes
 a proxy for the NPC (e.g. a capsule)

 Baking
 Find nodes

 places where an NPC can stand. How: collisions tests
 Find arches, for each type of movement

 Walk: dynamic collision test to determine
if it is possible to go from A to B

 Jump up: heuristics about height differences
 Jump down: other 3D spatial heuristics

 Add costs (e.g. time estimations)
 Add ad-hoc or dynamic behavior

 E.g. add/remove arches when a door gets unlocked/locked,
 Add/remove arches when a magic teleport portal is activated/deactivated,
 etc

32

34

Marco Tarini
Università degli Studi di Milano

2019-05-28

3D video games 2018/2019
AI for 3D games (brief) 16

Nav Mesh: Unity

Customizing A* / Dijkstra

 Cost function ≠ time or distance
 Customize the costs freely

 E.g. doors: add cost to open them
 E.g. in a shooter:

 Increase cost of nodes currently “under friendly fire”
(“don’t get in the line of fire of your friends”

 Increase cost of exposed nodes
(“don’t get caught in the open”)

 Remember: A* needs underestimations
 Decreasing costs requires care
 E.g. add teleport doors? Be careful

find out with 3D raycasts

35

36

Marco Tarini
Università degli Studi di Milano

2019-05-28

3D video games 2018/2019
AI for 3D games (brief) 17

Flocking algorithms

 A mid-level objective: “stay with the group”
 but “not too close”

 Each element of the swarm targets the position of
the 3D barycenter swarm
 But avoids collision with closer members

 ==> decent flocking behavior emerges
 E.g. flock of birds, school of fishes
 But this is just the ABC of flocking algorithms
 Many subtilities can be added

Other mid-level objectives
in 3D games

 Often, completely ad-hoc strategies:
 E.g. driving games:

compute-and-bake (or manually edit)
the optimal 3D path in each racing circuit
 e.g. as a b-spline curve or as a segmented curve

 Just make NPC cars target the path position ahead of
them (mid level), but avoid collisions (low level)

 => decent racer behavior emerges

37

38

Marco Tarini
Università degli Studi di Milano

2019-05-28

3D video games 2018/2019
AI for 3D games (brief) 18

Authoring an AI for an NPC

 Cascading goals

 Hi-Level Goals

 Low-Level Goals

 Lowest-level Goals

 Acts

Authoring an AI for an NPC:
classic approach

 Cascading goals

 Hi-Level Goals

 Low-Level Goals

 Lowest-level Goals

 Acts

FSM

Scripts

Scripts /
Hard-Wired
Subroutines
(by the AI engine)

39

40

Marco Tarini
Università degli Studi di Milano

2019-05-28

3D video games 2018/2019
AI for 3D games (brief) 19

Example: terrified bystander

 Cascading goals

 Hi-Level Goal

 Low-Level Goal

 Lowest-level Goal

 Acts

I’m “Escaping”

I’m going to that
hiding spot

I’m passing through here
(find route to it -- navigation)

(actual movements +
“panicked-run” animation)

Example: WWII soldier

 Cascading goals

 Hi-Level Goal

 Low-Level Goal

 Lowest-level Goal

 Acts

I’m Sniping

I’m going for that
enemy soldier

I’m aiming at this (x,y,z)
(the center of his exposed head)

crouched-aim animation
+ turn left by 2.5 deg
+ IK to re-orient rifle vertically

41

42

Marco Tarini
Università degli Studi di Milano

2019-05-28

3D video games 2018/2019
AI for 3D games (brief) 20

Example: guard

 Cascading goals

 Hi-Level Goal

 Low-Level Goal

 Lowest-level Goal

 Acts

I’m “Patroling”

I’m going to
3rd Nav point

I’m passing through here
(find route to it -- navigation)

(actual movements +
“alerted-walk” animation)

Background FSM
(more technically: Moore machines)

 Nodes = states
 Arches = transitions

 associated to arches: input (senses, events)
 associated to states: output (actions)
 current state: state of the IA mind

43

44

Marco Tarini
Università degli Studi di Milano

2019-05-28

3D video games 2018/2019
AI for 3D games (brief) 21

FSM example: a guard

PATROLLING INVESTIGATE ATTACK

see / hear
anything suspicious

(distant player, corpse…)

timeout /
zero “patience” reached

see
near player

sight lost

FSM in practice

 Just a scripting guideline
 one “status” variable
 transitions: manually coded in

 Or, a behavior authoring tool
 intended for the AI designer
 hardwired support, by game AI engine
 maybe WYSIWYG editor
 transitions: conditions (to be checked automatically)
 statuses: linked to effects (sound, animation,…)
 (small advantage: avoids real time

script interpretation ==> can be more efficient)

if (status==PATROLING)
then doPatroling();

if (status==ATTACK)
then doAttack();

procedure doPatroling(){
// …
if next_nav_point reached …

// state transitions
if (target_in_sight)

then status = ATTACK;
}

46

47

Marco Tarini
Università degli Studi di Milano

2019-05-28

3D video games 2018/2019
AI for 3D games (brief) 22

Authoring an AI for an NPC:
more tools

 Problem with the FSM approach :
 does not scale well

with world / behavior complexity
 quickly produces very complex nets
 (ok, for simple behavior)

 Alternatives:
 HFSM
 Behavioral Trees

unified handling of all levels;
blur classic distinction between
hi-level / low-level planning.

also blur classic distinction between
sensing / thinking / acting

HFSM
Hierarchical Finite State Machines

48

49

Marco Tarini
Università degli Studi di Milano

2019-05-28

3D video games 2018/2019
AI for 3D games (brief) 23

HFSM: concept

 A FSM where a state can be a sub-FSM
 meta-state = sub-FSM
 meta-transitions =

checked from any state of the current sub FSM
 recursive (multiple levels)

 Advantages:
 easier design
 aids reusing chunks of behavior

(from an AI to another)

Behavioral Trees

patrol

investigate

attack

aim

move

shoot
turn left turn right

50

51

Marco Tarini
Università degli Studi di Milano

2019-05-28

3D video games 2018/2019
AI for 3D games (brief) 24

Behavioral Trees

= interface between IA and environment: acts, sensing (queries)

Behavioral Trees:
nodes

 every node, when it has done running, can either:
fail
succeed

 leaves: interaction with environment
 action leaf:

 animations, movements, sound, game logic…
 Success: done it.

Failure: could not do it
 (e.g. movement negated by obstacle, object not in inventory…)

 sense leaf :
 queries on senses, on game status, …
 Success / Failure: query result

 (e.g see / not see an obstacle in front of IA)
 distinction not necessarily strict

52

53

Marco Tarini
Università degli Studi di Milano

2019-05-28

3D video games 2018/2019
AI for 3D games (brief) 25

Behavioral Trees:
nodes

 internal nodes: sequence

Behavioral Trees:
nodes

 internal nodes: sequence

54

55

Marco Tarini
Università degli Studi di Milano

2019-05-28

3D video games 2018/2019
AI for 3D games (brief) 26

Behavioral Trees:
nodes

 internal nodes: selector

Behavioral Trees:
nodes

 internal nodes: selector

56

57

Marco Tarini
Università degli Studi di Milano

2019-05-28

3D video games 2018/2019
AI for 3D games (brief) 27

Behavioral Trees:
nodes

 or, nodes can be programmed arbitary
(scripted procedure) (LUA, C#, …)
 run children, as calls
 fail or succeed, as returned value

LUA

BT as
a framework to
structure /
reuse /
organize
scripts

Compute behavior:
visit tree

LUA

doing it…

58

59

Marco Tarini
Università degli Studi di Milano

2019-05-28

3D video games 2018/2019
AI for 3D games (brief) 28

Compute behavior:
visit tree

LUA

doing it…

Compute behavior:
visit tree

LUA

doing it…

60

61

Marco Tarini
Università degli Studi di Milano

2019-05-28

3D video games 2018/2019
AI for 3D games (brief) 29

Compute behavior:
visit tree

LUA

doing
it…

 Each node can be:
 failed
 success
 in progress
 (or still unvisited)

 Current IA-mind status: path from root to leaf
 Nodes in the path are
 Low depth nodes: high-level objectives
 Hight depth nodes: low-level objectives
 Leaf of the path: current action / sensing action

Behavior trees: notes

62

63

Marco Tarini
Università degli Studi di Milano

2019-05-28

3D video games 2018/2019
AI for 3D games (brief) 30

Example 1/3

Example by Chris Simpson (gamasutra)

Sequence

Example 1/3

Sequence

Example by Chris Simpson (gamasutra)

64

65

Marco Tarini
Università degli Studi di Milano

2019-05-28

3D video games 2018/2019
AI for 3D games (brief) 31

Example 1/3

Sequence

Example by Chris Simpson (gamasutra)

Inverter

Example 1/3

Sequence

Example by Chris Simpson (gamasutra)

66

67

Marco Tarini
Università degli Studi di Milano

2019-05-28

3D video games 2018/2019
AI for 3D games (brief) 32

Example 2/3

Sequence

Example by Chris Simpson (gamasutra)

Selector

Sequence

Example 3/3

Sequence

Example by Chris Simpson (gamasutra)

Selector

Sequence

Sequence Sequence

Selector Selector

68

69

Marco Tarini
Università degli Studi di Milano

2019-05-28

3D video games 2018/2019
AI for 3D games (brief) 33

AI support in a game engine:
a summary

 Assets for (NPC) AI:
 for behavior modelling:

 Scripts (can well be the only one)
 FSM
 HFSM
 BT

 for navigation:
 nav-meshes (aka AI-meshes)

 for sensing / queries:
 hit-boxes, bounding volumes, spatial indexing
 the same ones used by physic engine for collision detection

 Game tools
 to assist their construction (by AI designer)

 Support for a few hard-wired functions
 to solve lowest level tasks

To investigate further

70

71

