
Marco Tarini
Università degli Studi di Milano

03/06/2019

3D video games 2018/2019
Rendering techniques for games (brief) 1

3D Videogames 2018/2019
Univ. degli Studi di Milano

Rendering in games
Part II: popular techniques in games

GPU pipeline – simplified
even more

3D vertex
(e.g. of
a mesh)

fragment
process

pixels
finali

fragments
(“wanna be

pixel”)

transform

z x

v0
v1

v2

rasterizer

y

2D screen
triangle

v0
v1

v2

69

70

Marco Tarini
Università degli Studi di Milano

03/06/2019

3D video games 2018/2019
Rendering techniques for games (brief) 2

basics: Depth buffer

per
fragment

per
triangle

Scene
(geometry)

SCREEN BUFFER
per

vertex

transform rasterize texturing,
lighting,…
+ depth test

DEPTH-BUFFER

+

s c r e e n

by-product

Depth buffer
(or Z-buffer) (or depth-map)

 Any rendering producing a screen-buffer …
 Which is sent to the screen

 Also produces a depth-buffer
 as a by product
 it’s used during rendering to deterineocclusions

(what covers what in a scene)
 many algorithms exploit it that!

71

72

Marco Tarini
Università degli Studi di Milano

03/06/2019

3D video games 2018/2019
Rendering techniques for games (brief) 3

basics: Double Buffering

SCREEN BUFFER A

B
SCREEN BUFFER B

WIP

Scene
(geometry)

basics: Double Buffering

SCREEN BUFFER A

A

SCREEN BUFFER B

WIP

Scene
(geometry)

73

74

Marco Tarini
Università degli Studi di Milano

03/06/2019

3D video games 2018/2019
Rendering techniques for games (brief) 4

basics:
Render to Texture

per
fragment

per
vertex

per
triangle

v0
v1

v2

GEOMETRY
SCREEN
BUFFER

TEXTURES

“Render Target”

SCREEN
BUFFER

basics:
Render to Texture

per
fragment

per
vertex

per
triangle

v0
v1

v2

GEOMETRY TEXTURE

TEXTURES

“Render Target”

75

76

Marco Tarini
Università degli Studi di Milano

03/06/2019

3D video games 2018/2019
Rendering techniques for games (brief) 5

basics:
Render to Texture

per
fragment

per
vertex

per
triangle

v0
v1

v2

GEOMETRY TEXTURE

TEXTURES

per
fragment

per
vertex

per
triangle

v0
v1

v2

GEOMETRY
SCREEN
BUFFER

“Render Target”

“Render Target”

Multipass rendering techniques
(general concept)

 1st pass: fill an internal 2D buffer
 i.e. An “off-screen” buffer (a buffer never shown to the user)
 It’s the output of this rendering, i.e.its “render target”
 Normally, the render target is the “screen buffer”

(buffer shown to the screen)
 This is also known as “render to texture”

 2st pass: fill the actual screen buffer
 Using the just-computed internal buffer as a 2D texture

 Notes:
 the off-screen buffer is either only written (1st pass) or read-

only (2nd pass). Not both at the same time! Good for efficiency.
 the off-screen is constructed and used in GPU RAM.

No expensive swap of memory between CPU and GPU

77

78

Marco Tarini
Università degli Studi di Milano

03/06/2019

3D video games 2018/2019
Rendering techniques for games (brief) 6

Example: metallic reflections
of dynamic scenes

per
fragment

per
triangle

Scene
(geometry)

per
vertex

transform rasterize texturing,
lighting

1s
t P

AS
S

img by Tze-Yiu Ho

Env-Map
(6 images)

per
fragment

per
triangle

Scene
(geometry)

per
vertex

transform rasterize texturing,
lighting
including
reflection
over
metallic objects

2n
d

PA
SS Final

Screen-Buffer

Main rendering algorithms:
two classes of approaches

 Forward rendering
 Deferred shading

aka Deferred lighting (actually, a variation)
aka Deferred rendering (inappropriate?)

79

80

Marco Tarini
Università degli Studi di Milano

03/06/2019

3D video games 2018/2019
Rendering techniques for games (brief) 7

 Forward rendering

Main rendering algorithms:
two classes of approaches

per
fragment

per
triangle

Scene
(geometry)

SCREEN BUFFER

per
vertex

Render Target

transform rasterize texturing,
depth test,
etc,
and Lighting

 Deferred shading

Main rendering algorithms:
two classes of approaches

aka Deferred lighting (actually, a variation)
aka Deferred rendering (inappropriate?)

SCREEN BUFFER
Lighting

texturing,
depth test
etc,
and Lighting

A single
full-screen

quad

per
fragment

2n
d

PA
SS

Scene
(geometry)

transform rasterize

(multiple) Render Targets

“G-BUFFER”

normals diffuse colors depth
buffer

per
fragment

per
triangle

per
vertex

1s
t P

AS
S

81

82

Marco Tarini
Università degli Studi di Milano

03/06/2019

3D video games 2018/2019
Rendering techniques for games (brief) 8

Main rendering algorithms:
two classes of approaches

 Deferred shading
 Advantage: lighting is computed only for what is actually

visible (huge saving if large depth complexity and lighting
complexity – safe assumptions is games)

 Disadvantage: needs a separate buffer for every material
parameter (sometimes, a material index)

 Limits range of materials?
 Disadvantage: not very good with semi-transparency

 Which approach to use?
 Both are employed by games
 Basilar choice! Implementation of all other rendering

algorithms changes accordingly.

Ad-hoc rendering techniques
popular in games: a summary

 Shadowing
 shadow mapping
 Screen Space Ambient Occlusion

 Camera lens effects
 Flares
 limited Depth Of Field

 Motion blur
 High Dynamic Range
 Non Photorealistic Rendering

 contours
 lighting quantization

 Texture-for-geometry
 Bumpmapping
 Parallax mapping

SSAO

DoF

HDR

NPR

with PCF

83

84

Marco Tarini
Università degli Studi di Milano

03/06/2019

3D video games 2018/2019
Rendering techniques for games (brief) 9

Screen-space techniques in general
(a class of multi-pass techniques)

 1st pass:
 Render the scene from the same point of view

as the final scene
 Produce: final color buffer, plus a z-buffer

(and/or other auxiliary buffer)
 2nd pass:
 render just one single “full screen” rectangle
 (it filling the entire screens with two triangles)
 for each produced fragment: apply 2D effects to the buffer

 Notes:
 Basically, apply image filters to the rendering.
 Many of the techniques in the previous slides are like this

Shadow mapping

86

88

Marco Tarini
Università degli Studi di Milano

03/06/2019

3D video games 2018/2019
Rendering techniques for games (brief) 10

Shadow-mapping in a nutshell
(multi-pass technique)

1st pass:
 camera in light position
 render all light blockers
 produce a depth buffer only (known as the shadow map)
 (repeat for each discrete light casting a shadow)

2nd pass:
 camera in final position
 for each fragment,

access the shadow-map,
determine if that
if fragment is visible
by light (or not)

 If not visible,
negate contribution
of that discrete light source

 Result:
 Blockers cast ashadow

Shadow mapping
in a nutshell

EYE
LIGHT

SHADOW
MAP

final
SCREEN
BUFFER

90

91

Marco Tarini
Università degli Studi di Milano

03/06/2019

3D video games 2018/2019
Rendering techniques for games (brief) 11

Shadow Mapping:
issues

 Rendering shadow-map:
 Must be redone every time object move
 can be baked once and for all, for static objects only
 (jet another reason to label static objects!)

 Shadow-map resolution:
 it matters! aliasing effects
 remedies: PCF, multi-res shadow-map

optional topics
(no exam)

Shadow Mapping:
results

 Negates (zeroes) the
light term of discrete light-sources

 Other light components are still summed
together…
 Non blocked lights
 Ambient factor
 Background illumination (e.g. from light probes)

92

93

Marco Tarini
Università degli Studi di Milano

03/06/2019

3D video games 2018/2019
Rendering techniques for games (brief) 12

Screen Space AO (SSAO)

Final

SSAO only

Ambient occlusion (AO)

 Cast shadows (computed by shadow-maps)
negate the light coming from discrete light sources

 “Ambient occlusion”, negates (occludes) the
“ambient” component of lighting, instead

 Idea:
 the AO is a factor (between 0 and 1) for each surface point
 AO factor multiples the ambient component for that point
 Intuitively, for a point p, its AO factor is a measure of how

much p is exposed in the open
 p is well exposed: AO ≈ 1.0
 p is hidden, e.g. it is in the bottom of a crack: AO ≈ 0.0

 Exact definition - not in this course. But keep in mind:
 (1) it is an approximation
 (2) it is a purely geometrical computation

94

95

Marco Tarini
Università degli Studi di Milano

03/06/2019

3D video games 2018/2019
Rendering techniques for games (brief) 13

Two ways to compute AO:
OSAO versus SSAO

 Object Space Ambient Occlusion (OSAO)
 Baked in preprocessing on each mesh
 Stored as a per-vertex attribute OR a texture

(“AO-map”, or “light-map”)
 Pro: accurate & cheap (during rendering)
 Con: static! Doesn’t reflect current pos of the objects in the scene

 Screen Space Ambient Occlusion (SSAO)
 Screen space technique
 1st pass: compute depth map (maybe normal too)
 2nd pass: compute AO map from the above

(AO factor of each pixel, depends on neighboring depth values)
 Final pass: use AO per-pixel from pass 2
 Pro: dynamic! Reflect current position of objects in the scene
 Con: less accurate

 Can be combined!

Baking AO over a mesh
(OSAO)

AO map

Hidden:
low AO factor
(dark)

Exposed
high AO-factor

96

97

Marco Tarini
Università degli Studi di Milano

03/06/2019

3D video games 2018/2019
Rendering techniques for games (brief) 14

With SSAO

ON

Screen Space AO
in a nutshell

 First pass: standard rendering
 produces: rgb image
 produces: depth image

 Second pass:
screen space technique
 for each pixel, look at depth VS its neighbors:
 neighbors in front?

difficult to reach pixel: darken ambient
 neighbors behind?

pixel exposed to ambient light: keep it lit

99

100

Marco Tarini
Università degli Studi di Milano

03/06/2019

3D video games 2018/2019
Rendering techniques for games (brief) 15

(limited)
Depth of Field

depth
in focus
range:
sharpdepth

out of focus
range:

blurred

(limited) Depth of Field
in a nutshell

 Screen space technique:
 1st pass: standard rendering, producing
 RGB image
 Z-buffer

 Second pass:
 pixel inside of focus range? Keep in focus
 pixel outside of focus range? blur
 Blur, way 1 = average with neighbors pixels

kernel size ~= amount of blur
 Blur, way 2 = compute MIP-map of RGB image,

use lower MIP-map level with bilinear interpolation

101

102

Marco Tarini
Università degli Studi di Milano

03/06/2019

3D video games 2018/2019
Rendering techniques for games (brief) 16

HDR - High Dynamic Range
(limited Dynamic Range)

HDR - High Dynamic Range
in a nutshell

 Screen space technique:
 First pass: like a normal rendering, BUT

use lighting / materials with any values
 RGB of final pixel values not in [0..1]
 e.g. sun emits light with RGB [10.0,10.0,10.0]:
 If >1 = “overexposed”! E.g. “whiter than white”

 Second pass:
 Make values >1 bleed over other pixels
 i.e.: overexposed pixels lighten neighbors

103

104

Marco Tarini
Università degli Studi di Milano

03/06/2019

3D video games 2018/2019
Rendering techniques for games (brief) 17

Parallax Mapping

Normal map
only

Parallax Mapping

Normal map
+ Parallax map

105

106

Marco Tarini
Università degli Studi di Milano

03/06/2019

3D video games 2018/2019
Rendering techniques for games (brief) 18

Parallax mapping:
in a nutshell

 Texture-for-geometry technique
 Texture used:
 displacement maps
 color / rgb map

Motion Blur

107

108

Marco Tarini
Università degli Studi di Milano

03/06/2019

3D video games 2018/2019
Rendering techniques for games (brief) 19

Non-PhotoRealistic Rendering
(NPR)

 Any rendering technique not aimed at realism
 Instead, the objective can be:
 imitating a given style (imitative rendering),

such as:
 cartoons (“toon shading”) most popular!
 pen-and-ink drawings
 pencil sketches
 pixel art  popular in nostalgic retro games (niche)
 manga, or, western comics  not uncommon
 pastels, oil paintings, crayons …

 clarity/readability (illustrative rendering)
 usually not for games

Toon shading / Cel Shading

109

110

Marco Tarini
Università degli Studi di Milano

03/06/2019

3D video games 2018/2019
Rendering techniques for games (brief) 20

Toon shading / Cel Shading

(tweaked) Team Fortress II – Steam

Toon shading / Cell Shading
in a nutshell

 Simulating “toons”
 Two effects:
 add contour lines
 lines appearing at discontinuities of:

1. depth,
2. normals,
3. materials

 quantize lighting:
 e.g. 2 or 3 tones: light, medium, dark

instead of continuous
 simple variation of lighting equation

111

112

Marco Tarini
Università degli Studi di Milano

03/06/2019

3D video games 2018/2019
Rendering techniques for games (brief) 21

NPR rendering:
e.g.: simulated pixel art

img by Howard Day (2015)

NPR rendering:
simulated pixel art

img by Lucas Pope

113

114

