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Rendering in games
Part II: popular techniques in games

GPU pipeline – simplified 
even more
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basics: Depth buffer 

per
fragment

per 
triangle

Scene
(geometry)

SCREEN BUFFER
per 

vertex

transform rasterize texturing,
lighting,…
+ depth test

DEPTH-BUFFER

+

s c r e e n

by-product

Depth buffer 
(or Z-buffer) (or depth-map)

 Any rendering producing a screen-buffer …
 Which is sent to the screen

 Also produces a depth-buffer
 as a by product
 it’s used during rendering to deterineocclusions

(what covers what in a scene)
 many algorithms exploit it that!
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basics: Double Buffering
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basics: 
Render to Texture
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basics: 
Render to Texture
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Multipass rendering techniques 
(general concept)

 1st pass: fill an internal 2D buffer
 i.e. An “off-screen” buffer (a buffer never shown to the user)
 It’s the output of this rendering, i.e.its “render target”
 Normally, the render target is the “screen buffer”

(buffer shown to the screen)
 This is also known as “render to texture”

 2st pass: fill the actual screen buffer
 Using the just-computed internal buffer as a 2D texture

 Notes: 
 the off-screen buffer is either only written (1st pass) or read-

only (2nd pass). Not both at the same time! Good for efficiency.
 the off-screen is constructed and used in GPU RAM. 

No expensive swap of memory between CPU and GPU 
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Example: metallic reflections
of dynamic scenes
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img by Tze-Yiu Ho

Env-Map
(6 images)
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Scene
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transform rasterize texturing,
lighting
including
reflection
over 
metallic objects

2n
d 

PA
SS Final

Screen-Buffer

Main rendering algorithms:
two classes of approaches

 Forward rendering
 Deferred shading

aka Deferred lighting  (actually, a variation)
aka Deferred rendering  (inappropriate?)
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 Forward rendering

Main rendering algorithms:
two classes of approaches
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 Deferred shading

Main rendering algorithms:
two classes of approaches

aka Deferred lighting  (actually, a variation)
aka Deferred rendering  (inappropriate?)
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Main rendering algorithms:
two classes of approaches

 Deferred shading 
 Advantage: lighting is computed only for what is actually 

visible (huge saving if large depth complexity and lighting 
complexity – safe assumptions is games)

 Disadvantage: needs a separate buffer for every material 
parameter (sometimes, a material index)

 Limits range of materials?
 Disadvantage: not very good with semi-transparency

 Which approach to use?
 Both are employed by games
 Basilar choice! Implementation of all other rendering 

algorithms changes accordingly.

Ad-hoc rendering techniques
popular in games: a summary

 Shadowing
 shadow mapping
 Screen Space Ambient Occlusion

 Camera lens effects
 Flares
 limited Depth Of Field

 Motion blur
 High Dynamic Range
 Non Photorealistic Rendering

 contours
 lighting quantization

 Texture-for-geometry
 Bumpmapping
 Parallax mapping

SSAO

DoF

HDR

NPR

with PCF
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Screen-space techniques in general
(a class of multi-pass techniques)

 1st pass: 
 Render the scene from the same point of view

as the final scene
 Produce: final color buffer, plus a z-buffer

(and/or other auxiliary buffer)
 2nd pass:
 render just one single “full screen” rectangle
 (it filling the entire screens with two triangles)
 for each produced fragment: apply 2D effects to the buffer

 Notes:
 Basically, apply image filters to the rendering.
 Many of the techniques in the previous slides are like this

Shadow mapping
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Shadow-mapping in a nutshell
(multi-pass technique)

1st pass: 
 camera in light position
 render all light blockers
 produce a depth buffer only (known as the shadow map)
 (repeat for each discrete light casting a shadow)

2nd pass: 
 camera in final position
 for each fragment,

access the shadow-map,
determine if that
if fragment is visible
by light (or not)

 If not visible,
negate contribution
of that discrete light source

 Result:
 Blockers cast ashadow

Shadow mapping
in a nutshell

EYE
LIGHT

SHADOW
MAP

final
SCREEN
BUFFER
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Shadow Mapping:
issues

 Rendering shadow-map:
 Must be redone every time object move
 can be baked once and for all, for static objects only
 (jet another reason to label static objects!)

 Shadow-map resolution:
 it matters! aliasing effects
 remedies: PCF, multi-res shadow-map

optional  topics
(no exam)

Shadow Mapping:
results

 Negates (zeroes) the 
light term of discrete light-sources

 Other light components are still summed
together…
 Non blocked lights
 Ambient factor
 Background illumination (e.g. from light probes)
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Screen Space AO (SSAO)

Final

SSAO only

Ambient occlusion (AO)

 Cast shadows (computed by shadow-maps) 
negate the light coming from discrete light sources

 “Ambient occlusion”, negates (occludes) the 
“ambient” component of lighting, instead

 Idea: 
 the AO is a factor (between 0 and 1) for each surface point
 AO factor multiples the ambient component for that point
 Intuitively, for a point p, its AO factor is a measure of how 

much p is exposed in the open
 p is well exposed: AO ≈ 1.0
 p is hidden, e.g. it is in the bottom of a crack: AO ≈ 0.0

 Exact definition - not in this course. But keep in mind: 
 (1) it is an approximation 
 (2) it is a purely geometrical computation
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Two ways to compute AO:
OSAO  versus  SSAO

 Object Space Ambient Occlusion (OSAO)
 Baked in preprocessing on each mesh
 Stored as a per-vertex attribute OR a texture 

(“AO-map”, or “light-map”)
 Pro: accurate & cheap (during rendering)
 Con: static! Doesn’t reflect current pos of the objects in the scene

 Screen Space Ambient Occlusion (SSAO)
 Screen space technique
 1st pass: compute depth map (maybe normal too)
 2nd pass: compute AO map from the above

(AO factor of each pixel, depends on neighboring depth values)
 Final pass: use AO per-pixel from pass 2
 Pro: dynamic! Reflect current position of objects in the scene
 Con: less accurate

 Can be combined!

Baking AO over a mesh
(OSAO)

AO map

Hidden:
low AO factor
(dark)

Exposed
high AO-factor
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With SSAO

ON

Screen Space AO
in a nutshell

 First pass: standard rendering
 produces: rgb image
 produces: depth image

 Second pass: 
screen space technique
 for each pixel, look at depth VS its neighbors:
 neighbors in front? 

difficult to reach pixel: darken ambient
 neighbors behind? 

pixel exposed to ambient light: keep it lit
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(limited)
Depth of Field

depth
in focus 
range:
sharpdepth

out of focus 
range:

blurred

(limited) Depth of Field 
in a nutshell

 Screen space technique:
 1st pass: standard rendering, producing
 RGB image
 Z-buffer

 Second pass: 
 pixel inside of focus range?  Keep in focus
 pixel outside of focus range?  blur
 Blur, way 1 = average with neighbors pixels

kernel size ~= amount of blur
 Blur, way 2 = compute MIP-map of RGB image,

use lower MIP-map level with bilinear interpolation
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HDR - High Dynamic Range
(limited Dynamic Range)

HDR - High Dynamic Range
in a nutshell

 Screen space technique:
 First pass: like a normal rendering, BUT

use lighting / materials with any values
 RGB of final pixel values not in [0..1]
 e.g. sun emits light with RGB [10.0,10.0,10.0]: 
 If  >1 = “overexposed”! E.g. “whiter than white”

 Second pass: 
 Make values >1 bleed over other pixels
 i.e.: overexposed pixels lighten neighbors
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Parallax Mapping

Normal map
only

Parallax Mapping

Normal map
+ Parallax map
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Parallax mapping:
in a nutshell

 Texture-for-geometry technique
 Texture used:
 displacement maps
 color / rgb map

Motion Blur
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Non-PhotoRealistic Rendering
(NPR)

 Any rendering technique not aimed at realism
 Instead, the objective can be:
 imitating a given style (imitative rendering),

such as:
 cartoons (“toon shading”)  most popular!
 pen-and-ink drawings
 pencil sketches
 pixel art  popular in nostalgic retro games (niche)
 manga, or, western comics   not uncommon
 pastels, oil paintings, crayons …

 clarity/readability  (illustrative rendering) 
 usually not for games

Toon shading / Cel Shading
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Toon shading / Cel Shading

(tweaked) Team Fortress II – Steam 

Toon shading / Cell Shading
in a nutshell

 Simulating “toons”
 Two effects:
 add contour lines
 lines appearing at discontinuities of:

1. depth, 
2. normals, 
3. materials

 quantize lighting:
 e.g. 2 or 3 tones: light, medium, dark

instead of continuous
 simple variation of lighting equation
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NPR rendering:
e.g.: simulated pixel art

img by Howard Day (2015)

NPR rendering:
simulated pixel art

img by Lucas Pope
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