
Nome:	Cogn	ome:	Matricola:		
1)	INTRO 1: Elenca due task comuni d	ei Game Engine che po	otenzialmente utilizzano la GPU		
	fisica (dinamica, non collision detec	tion)			
	Evoluzione dei sistemi di particelle				
	INTRO 2: menziona tre applicazion	i della <i>proceduralità</i> ne	i games		
	Terreni Musica Livelli				
3)	MATH 1: formula per coseno dell'a	ingolo fra due vettori d	ati v e w ? (NB: non "versori")		
		$v \cdot w$			
		v w			
	MATH 2: modo per discernere in q punto q con normale n si trova un	•	delimitati da un piano passante per i		
	Segno di p· (p-q)				
	MATH 3: menziona due effetti che con una Similitudine (cioè una rota	•	on una Trasformazione Affine, ma nor rme + traslazione)		
	Scalature uniforme Skewing				
·	<i>MATH 4</i> : abbiamo menzionato che la classe delle Trasformazioni che consistono in scalature generiche + rotazioni + traslazioni (usate per esempio da Unity e Unreal) presenta un grave inconveniente tecnico. Quale?				
	Non è chiusa rispetto alla composizio	one			
7)	MATH 5: ho due rotazioni definite dai quaternioni A = (0,0,0,-1) e B = (0.5, 0.5, 0.5, 0.5). L'interpolazione delle due con pesi 0.5, 0.5. (segnare tutte quelle che si appicano) è				
			e quelle cne si appicano) e \(\subseteq \text{ \text{e}} \) (A+B), rinormalizzato		
	☐ mal posto: A non è una rot.		•		
	☐ mal posto: i pesi non sono valid	i			

- 8) MATH 6: posso memorizzare una rotazione con solo tre floats?
 - □ No
 - ☐ Si, ma solo attraverso quest'unica rappresentazione:
 - ☑ Si, solo attraverso queste rappresentazioni: Angoli di Eulero, Asse x Angolo
- 9) SCENE GRAPH 1: (v. schema) al nodo L deve essere assegnata una nuova trasformazione *globale* T: come devo modificare solo la sua trasformazione *locale* per ottenere questo scopo?

[Dare una formula del tipo: quale trasformazione dello schema devo sostituire con quale espressione]

$$T_7 \leftarrow (T_3)^{-1} \cdot (T_0)^{-1} \cdot T$$

(infatti voglio che $T_0 \cdot T_3 \cdot T_7 = T$, dove $T_7 \in I_3$ nuova trasfrormazione locale del nodo L)

10) SCENE GRAPH 2: (v. schema) ho due istanze di un oggetto mesh nei nodi L e F.

I loro vertici hanno le stesse coordiante in spazio locale? ☑ Si ☐ No La Posizione del primo dei due espressa nello spazio del secondo dei due viene modificata quando aggiungo una traslazione a una delle seguenti trasformazioni locali, ma non altre [fornire la lista esaustiva delle trasformazioni locali per le quali vale la frase sopra]:

11) PHYSICS-DYNAMICS 1: quali campi è necessario memorizzare per un corpo rigido 3D, ma non per una particella puntiforme, usando Eulero?

12) PHYSICS-DYNAMICS 2: alcuni algoritmi, fra cui Eulero, non mantenendo l'energia sono soggetti a fenomeni come oscillazioni divergenti. Nomina una semplice ma efficace contromisura:

Velocity damping

13) PHYSICS-DYNAMICS 3: Verlet: formula della prossima posizione P2 data la posizione attuale P1, la posizione precedente P0, e l'accelerazione vettoriale attuale A:

$$P_2 = 2 P_1 - P_0 + A \cdot dt^2$$

Test in itinere di 3D	video games.		
Nome:	Cognome:		Matricola:
	<i>IAMICS 4:</i> Pos del baricentro \mathbf{p}_{1} \mathbf{p}_{n} con masse m_{1} m_{n} e velo		di un corpo rigido scomposto in
$p = \sum_{i=1}^{n} p_i$			_
$v = \sum v_i$	m _i / m _{tot}	con Mtot = 2	∑ m;
•	IAMICS 5: Devo applicare un in per la particella devo modifica		cella con Verlet. Quali dei campi mente) perché
Modifico la po	osizione precedente		
(devo modifier	are la velocità implicita senza m	nodificare la posizion	e attuale)
16) PHYSICS-DYN	IAMICS 6: Un vantaggio di un s	istema LeapFrog ris	spetto ad il semplice Eulero:
	vergenza migliore		,
			iore per una stessa accuratezza)
(oppure: inve	zando il passo dt l'errore di app rtibilità)	prossimazione diventa	74 invece the 72)
17) <i>PHYSICS-COL</i> quelle giuste	LISIONS 1: cosa si mantiene in	un urto elastico e u	no anelastico (barrare tutte
Quantità di n	noto 🗹 elastico 🗹 anael	•	
Energia cinet	<i>ica</i> ☑ elastico □ anaelas <i>golare</i> ☑ elastico ☑ anaela		☐ elastico☐ anaelastico☑ elastico☑ anaelastico
Nota: il "T	orque" (coppia di forza che inc	luce un'accelerazion	e angolare) non ha molto senso
18) PHYSICS-COL	LISIONS 2: menziona una strut	tura di indicizzazior	ne spaziale
che abbia ter Una griglia re		nte col numero di e	elementi (sotto alcune ipotesi):
19) PARTICLE SYS	STEMS: evoluzione delle partic	elle è computata in	
	getto (oggetto emitter) 🗆 Nes		
☐ Spazio mo	ndo ⊻ Un	a qualsiasi delle du	е
20) <i>3D MODELS</i> 2	1: elenca i comuni attributi per	vertice presente n	egli asset di tipo mesh.
	dinate UV, colore (più altre		cora visto)
(volendo cons	iiderarla un attributo: la posizio	ne)	

21) 3D MODELS 2: scrivi (in C++, C#, Java) una struttura dati per memorizzare la <u>connettività</u> di una mesh.
class Face { int i,j,k; /* indici di tre vertici */ } vector< face > f; // connettività
vertor< face > /; // connettivita
22) 3D MODELS 3: due tecniche che tipicamente producono mesh a troppo irregolari e a risoluzione eccessiva per un uso diretto nei 3D games:
Seansione 3D
Digital sculpting
23) TEXTURES 1: l'UV-map di un modello varia in funzione della risoluzione della tessitura a cui fa riferimento □ Si ☑ No Perché (12 parole max):
Le coordinate UV sono normalizzate in [0,1]
24) TEXTURES 2: Schemi di compressione per tessiture: Quale è il rate di compressione tipico di questi schemi (barrare quelle che sono vere)? □ Dipende dal contenuto della tessitura ☑ Circa ¼ □ Circa quello del JPEG
Motivo per il quale le tessiture in GPU RAM richedono schemi di compressioni diverse da quelle delle comuni immagini (12 parole max)?
L'immagine compressa deve essere Random Access