
3D Video Games
02: Points, Vectors, Versors

2020-03-19

Marco Tarini
Unviersità degli studi di Milano 1

3D videogames

Points, Vectors, Versors
(recap)

Marco Tarini

Course Plan

lec. 1: Introduction
lec. 2: Mathematics for 3D Games

lec. 3: Scene Graph
lec. 4: Game 3D Physics +
lec. 5: Game Particle Systems
lec. 6: Game 3D Models
lec. 7: Game Textures
lec. 8: Game 3D Animations
lec. 9: Game 3D Audio
lec. 10: Networking for 3D Games
lec. 11: Artificial Intelligence for 3D Games
lec. 12: Game 3D Rendering Techniques

2

3

3D Video Games
02: Points, Vectors, Versors

2020-03-19

Marco Tarini
Unviersità degli studi di Milano 2

This lecture and the next two

Mathematics for 3D Game Progr. and C.G. (3rd ed)
Eric Lengyel

Chapters 2, 3, 4

Point, Vectors, Versors
and Spatial Transformation

They are the basic data-type of 3D Games
 In the computation, for all modules
 rendering engine
 physics engine
 AI
 3D sound
 …

 In the data structures of all 3D Assets
 See prev. lecture for the list

7

8

3D Video Games
02: Points, Vectors, Versors

2020-03-19

Marco Tarini
Unviersità degli studi di Milano 3

Point, Vectors, Versors
represents: example: imagine it as…

Point
A position

A location

Where a character is

The center of a sphere
a small
floating dot :-D

Vector

A displacement

The difference
between 2 points.

The vector that
connects them.

The velocity of
a thrown knife

The gravity acceleration

How to reach the head of
a character from its neck

a small
arrow :-D
(length is
relevant)

Versor
aka unit vector
(as length = 1)

aka normal
aka direction
aka normalized

vector

A direction

A facing

The view direction of a
character

The facing of a plane in 3D
(i.e. its “normal”)

The direction of a line,
or a ray

A rotation axis

the same :-D
(its length is
irrelevant)

Points, Vectors, Versors
…on a 3D floating tirangle

Examples of…
 point:

 one vertex of the triangle

 vector:
 one side of the triangle

 versor:
 the «normal» of the triangle

9

10

3D Video Games
02: Points, Vectors, Versors

2020-03-19

Marco Tarini
Unviersità degli studi di Milano 4

Points, Vectors, Versors
…in a character

Examples of…
 points:

 the pos of the navel
 the pos of lewer-left tip of the hood

 vectors:
 the vector connecting the L foot

to the R foot
 the vector from the hand

to the tip of the lance

 versors:
 the gaze direction
 the facing of the shield

Examples of…
 points:

 points of contact
between finger-spinner

 vectors:
 linear velocities

of these four points

 versors:
 rotation axis

(direction of)

Points, Vectors, Versors
…in a spinner

11

13

3D Video Games
02: Points, Vectors, Versors

2020-03-19

Marco Tarini
Unviersità degli studi di Milano 5

Points, Vectors, Versors
…in this screenshot

SUN

gg

Stuff = Points + Vectors + Versors

viewDir

upVec

viewPos

Description of the camera

14

15

3D Video Games
02: Points, Vectors, Versors

2020-03-19

Marco Tarini
Unviersità degli studi di Milano 6

Stuff = Points + Vectors + Versors

dir

pos
dir

pos

description of
a (directional) sound emitter

description of
a (directional) microphone

Stuff = Points + Vectors + Versors

dir
pos

description of a spotlight

16

17

3D Video Games
02: Points, Vectors, Versors

2020-03-19

Marco Tarini
Unviersità degli studi di Milano 7

Points, Vectors, Versors:
Internal representation

 n-tuple of scalar values (n is the dimension)
 with n = 3 (rarely, 2 or 4)
 they are the Cartesian coordinates of the point/vector

 e.g.: or:

 note: the same structure is often used
for points, vectors, and versors

class Vector3 {
// fields:
float coords[3];

// methods:
…

}

class Vector3 {
// fields:
float coords[3];

// methods:
…

}

class Vector3 {
// fields:
float x, y, z;

// methods:
…

}

class Vector3 {
// fields:
float x, y, z;

// methods:
…

}

Points, Vectors, Versors:
Internal representation

 one class for points, vectors, and versors
 E.g. done by:

 (and also by: GLSL, HLSL, Eigen, GLM, …)

class Vector3
https://docs.unity3d.com/ScriptReference/Vector3.html

class FVector
http://api.unrealengine.com/INT/API/Runtime/Core/Math/FVector/

19

20

3D Video Games
02: Points, Vectors, Versors

2020-03-19

Marco Tarini
Unviersità degli studi di Milano 8

Caveat:
one type, multiple semantics

 Many libraries/engines choose can opt to use
the same data type for 3D points, 3D vectors, 3D versors,
(plus, sometimes: colors, and more)
 alternatively, a library can use different types, e.g. Vector, Point, Versor

 Still, they should not be considered the same thing
 that’s nothing new:

likewise, we use the same scalar data types (“float”, “doubles”)
with widely different semantics (e.g. “weight”, “volume”, “temperature”…).

 It is up to us to operate on them accordingly
 e.g.: not ok to sum a temperature with a surface
 e.g.: ok to divide a weight by a volume (and get a specific weight)

 which operation does make sense on points, vectors, versors?
 that is, what is their algebra ?

Point, vector, versor algebra

 Hint: before going on, make sure to know / understand
each of the following operation in 3 different ways:

 intuitive / spatial: what does it do conceptually / visually

 algebraic / code: how to compute the result, starting from
(1) the coordinates of the operand(s)
(2) and, additionally, (for products)

the angle between the two operands, and their the lengths

 syntactic: how to write them down
(1) on paper (mathematical notation)
(2) in a programming language (Unity C# lib, Unreal C++ lib, GLSL…)

 Refer to the CG course / the book

⚙
⚙

✎

21

23

3D Video Games
02: Points, Vectors, Versors

2020-03-19

Marco Tarini
Unviersità degli studi di Milano 9

Point, vector, versor algebra

 Hint: also, familiarize with the way the operations behave, i.e. rules such as

(1) commutativity? associativity? (of each operation)
(2) distributivity? (between pairs of operations)
(3) inverse operation? identity element? absorbing element?

 Refer to the CG course / the book

Point and vector algebra
(summary 1/7)

 Difference:
point – point = vector

 Addition:
point + vector = point

24

26

3D Video Games
02: Points, Vectors, Versors

2020-03-19

Marco Tarini
Unviersità degli studi di Milano 10

Point and vector algebra
(summary 2/7)

 Linear operations for vectors
 addition (vector + vector = vector)
 product with a scalar (scaling)

(vector * scalar = vector)
 therefore: interpolation

mix(𝑣 , 𝑣 , 𝑡) = 1 − 𝑡 𝑣 + 𝑡 𝑣

 therefore: opposite (flip verse)
(how to: multiply by – 1)

 therefore: difference
(vector – vector = vector)

Point and vector algebra
(summary 3/7)

For vectors:
 Norm
 aka length / magnitude / Euclidean norm
 distance:

length of vector (a – b) = distance between a and b
 triangle inequality

 Normalization
 Input: a vector. Result: a versor
 how to: scale the vector by (1.0 / length)

27

28

3D Video Games
02: Points, Vectors, Versors

2020-03-19

Marco Tarini
Unviersità degli studi di Milano 11

Point and vector algebra
(summary 4/7)

Products between vectors, or between versors

 Dot product (or inner product)
 Output: a scalar

 Cross product (or vector product)
 Output: a vector (note: not a versor)

(exercises in class)

Section 2.2

Section 2.3

Point and vector algebra
(summary 5/7)

 Dot product, useful to:
 test orthogonality (if orthogonal then res == 0)

(between vectors, and/or versors alike)
 sign tells: angle < or > 90°

(between vectors, and/or versors alike)
 versor dot vector: project vector along axis
 versor dot versor: cosine of angle
 versor dot versor: a similarity measure (in -1 +1)
 any vector dot itself: its squared length

29

30

3D Video Games
02: Points, Vectors, Versors

2020-03-19

Marco Tarini
Unviersità degli studi di Milano 12

Point and vector algebra
(summary 6/7)

 Cross product, useful to:
 find orthogonal vectors
 therefore: construct orthonormal basis
 collinearity test (if colinear then res == (0,0,0))
 find (double) area of a 3D triangle
 find normal of a 3D triangle (renormalize it)
 norm of (versor cross versor): module of sin of angle
 analogue in 2D: 2D vector “cross” 2D vector = scalar

(how to: extend with Z=0, get Z of result)
 2D versor cross 2D versor: (signed) sin of angle

MORE
ABOUT

THUS NEXT
TIME

Products and angles

α

v

w

31

32

3D Video Games
02: Points, Vectors, Versors

2020-03-19

Marco Tarini
Unviersità degli studi di Milano 13

Point and vector algebra
(summary 7/7)

 Interpolate between pairs of <something> :
 mix(point , point , t) → point
 mix(vector , vector , t) → vector
 mix(versor , versor , t) → versor

 t is a scalar «weight»
 t = 0 → pick the first one
 t = 1 → pick the second one
 t ∈ (0,1) → get something in between, for example:
 t = 0.5 → just average the two
 t = 0.1 → use almost the first, with just a bit of the second in it
 t < 0 or t > 1 → extrapolate

 Terminology: (in libraries, game engines…)
 interpolate = mix = blend = lerp

a proper
interpolation

specifically linear

Interpolation in general - notes

 Very used in Computer Graphics (e.g. rendering, animation)
 Terminology:

 a x + b y : a linear combination of x and y
 if a+b=1 and a,b ∈[0,1] : a (linear) interpolation of x and y
 if a+b=1 but a,b ∉[0,1] : a (linear) extrapolation of x and y
 a , b : the weights a + b = 1 : weights are a partition of unity

 Generalizes to > 2 objects (a x + b y + c z)
 In interpolations of 2, we can just give one weight t.

 The other is is given by difference. a = t, b = 1-t

 General! All sort of objects can be interpolated
 Intuition: interpolation = a mix between objects
 Let’s analyze case of Points, Vectors, Versors

33

34

3D Video Games
02: Points, Vectors, Versors

2020-03-19

Marco Tarini
Unviersità degli studi di Milano 14

How to interpolate between…

 …two vectors 𝐯 and 𝐯 :
 1 − 𝑡 𝐯 + 𝑡 𝐯

 …two points 𝐩 and 𝐩 :
 1 − 𝑡 𝐩 + 𝑡 𝐩

which is just a shortcut to express:
𝐩 + 𝑡 𝐩 − 𝐩

 …two versors 𝐝 and 𝐝 :
 1 − 𝑡 𝐝 + 𝑡 𝐝

then renormalize the result (it’s no longer unitary).
Or, use “spherical interpolation” (aka “slerp”)…

Multiplying a point
with a scalar?

Summing two points?
Are these operations

even legal?

Just legal operations
(to-do: check)

Linear
interpolation

But easily
generalizes to > 2

LERP vs SLERP (of versors)

Linear interpolation:

Then, renormalize:

𝐝 = lerp(𝐝 , 𝐝 , ⅔)

⅔ x ⅓ x

Spherical interpolation:

Not the same result!
 But, close enough
 Even closer when:

𝐝 , 𝐝 similar OR t close to ½

 Is it worth the extra
computation cost? 🤔

𝐝 = slerp(𝐝 , 𝐝 , ⅔)

⅔ α ⅓α

35

36

3D Video Games
02: Points, Vectors, Versors

2020-03-19

Marco Tarini
Unviersità degli studi di Milano 15

The formulas

 LERP + normalization:

 1 − 𝑡 𝐝𝟎 + 𝑡 𝐝

then re-normalize

 or SLERP:

sin 1 − 𝑡 α

sin(α)
𝐝 +

sin 𝑡 α

sin(α)
𝐝

aka “NLERP”

angle
between
d0 and d1

SLERP: notes

 Applies to any unit vector
including 2D, 3D, and quaternions (see later)

 SLERP can even be used to vectors:
 Compute magnitudes
 Find direction (divide by magnitude, i.e. normalize)
 new dir = SLERP of their directions (unit vector)
 new mag = LERP of their magnitudes (scalars)
 multiply to find final result

37

38

3D Video Games
02: Points, Vectors, Versors

2020-03-19

Marco Tarini
Unviersità degli studi di Milano 16

Note: Generalization to
N - Dimension

 Everything seen in this lecture
generalizes in 2D (for 2D games),
or even in N>3 dimensions

 Exception: the cross product is only defined in 3D
 But in 2D, the problem of finding a vector orthogonal

to one (just one!) given vector is trivial:
“swap coordinates, flip one* sign”
(x,y) orthogonal to (-y,x)

*: which coordinate you flip determines if you rotate
90° clockwise or counterclockwise: try!

recap: Vector Base

 Axes: set of n
lin. ind. vectors
(x,y,z)

 Any vector v
can be expressed in
exactly 1 way as a linar
combination of these
vectors

 The weights are the
coord of v in that base

y

x
z

39

40

3D Video Games
02: Points, Vectors, Versors

2020-03-19

Marco Tarini
Unviersità degli studi di Milano 17

recap: Reference Frame (or Space)

 n axes (vectors)
+
1 origin (point)

 Any vector v :
one linear comb. of the
axes

 Any point p :
origin + one linear
comb. of axes

y

x
z

o

(vector base)

Recap: Orthonormal Frames
Or Cartesian Frame

 Axes are unit vectors
and reciprocally
orthogonal

41

42

3D Video Games
02: Points, Vectors, Versors

2020-03-19

Marco Tarini
Unviersità degli studi di Milano 18

Recap: Handed-ness of a
(Cartesian) frame
 They can be right- or left-handed

Use the same hand to imagine a cross product

𝑥 × 𝑦 = 𝑧
regardless!

z

x

y

z

x

y

𝑥 × 𝑦 = 𝑧

Still no standards in 3D games

 Unity: left-handed: X-right, Y-up, Z-forward
 Unreal: left-handed: X-forward, Y-right, Z-up
 3ds-Max: right-handed, Z-up
 Blender: left-handed, Z-up
 most VR systems: right-handed, Y-up
 OpenGL: (clip space) right-handed, Y-up
 DirectX: (clip space) left-handed, Y-down

personal opinion:
the most standard one,

among
3D modellers too

43

44

3D Video Games
02: Points, Vectors, Versors

2020-03-19

Marco Tarini
Unviersità degli studi di Milano 19

Pro-tip: try making your code
assumption free!

E.g.: to move a pos 2.5 units “to the right”:

Vector3 pos = new Vector3 (…);

pos.x = pos.x + 2.5; // maybe ??
pos.y = pos.y + 2.5; // hmm…??

Vector3 pos = new Vector3 (…);

pos += Vector3.right * 2.5;

Pro-tip: try making your code
assumption free!

E.g.: to move a pos 2.5 units “to the right”:

FVector pos = FVector(…);

pos.X += 2.5f; // maybe ??
pos.Y += 2.5f; // hmm…??

FVector pos (…);

pos += FVector::RightVector * 2.5f;

46

47

