
3D Video Games
02: Points, Vectors, Versors

2020-03-19

Marco Tarini
Unviersità degli studi di Milano 1

3D videogames

Points, Vectors, Versors
(recap)

Marco Tarini

Course Plan

lec. 1: Introduction 
lec. 2: Mathematics for 3D Games 

lec. 3: Scene Graph 
lec. 4: Game 3D Physics  + 
lec. 5: Game Particle Systems 
lec. 6: Game 3D Models 
lec. 7: Game Textures 
lec. 8: Game 3D Animations 
lec. 9: Game 3D Audio 
lec. 10: Networking for 3D Games
lec. 11: Artificial Intelligence for 3D Games 
lec. 12: Game 3D Rendering Techniques

2

3

3D Video Games
02: Points, Vectors, Versors

2020-03-19

Marco Tarini
Unviersità degli studi di Milano 2

This lecture and the next two

Mathematics for 3D Game Progr. and C.G. (3rd ed)
Eric Lengyel

Chapters 2, 3, 4

Point, Vectors, Versors
and Spatial Transformation

They are the basic data-type of 3D Games
 In the computation, for all modules
 rendering engine
 physics engine
 AI
 3D sound
 …

 In the data structures of all 3D Assets
 See prev. lecture for the list

7

8

3D Video Games
02: Points, Vectors, Versors

2020-03-19

Marco Tarini
Unviersità degli studi di Milano 3

Point, Vectors, Versors
represents: example: imagine it as…

Point
A position

A location

Where a character is

The center of a sphere
a small
floating dot :-D

Vector

A displacement

The difference
between 2 points.

The vector that
connects them.

The velocity of
a thrown knife

The gravity acceleration

How to reach the head of
a character from its neck

a small
arrow :-D
(length is
relevant)

Versor
aka unit vector
(as length = 1)

aka normal
aka direction
aka normalized

vector

A direction

A facing

The view direction of a
character

The facing of a plane in 3D
(i.e. its “normal”)

The direction of a line,
or a ray

A rotation axis

the same :-D
(its length is
irrelevant)

Points, Vectors, Versors
…on a 3D floating tirangle

Examples of…
 point:

 one vertex of the triangle

 vector:
 one side of the triangle

 versor:
 the «normal» of the triangle

9

10

3D Video Games
02: Points, Vectors, Versors

2020-03-19

Marco Tarini
Unviersità degli studi di Milano 4

Points, Vectors, Versors
…in a character

Examples of…
 points:

 the pos of the navel
 the pos of lewer-left tip of the hood

 vectors:
 the vector connecting the L foot

to the R foot
 the vector from the hand

to the tip of the lance

 versors:
 the gaze direction
 the facing of the shield

Examples of…
 points:

 points of contact
between finger-spinner

 vectors:
 linear velocities

of these four points

 versors:
 rotation axis

(direction of)

Points, Vectors, Versors
…in a spinner

11

13

3D Video Games
02: Points, Vectors, Versors

2020-03-19

Marco Tarini
Unviersità degli studi di Milano 5

Points, Vectors, Versors
…in this screenshot

SUN

gg

Stuff = Points + Vectors + Versors

viewDir

upVec

viewPos

Description of the camera

14

15

3D Video Games
02: Points, Vectors, Versors

2020-03-19

Marco Tarini
Unviersità degli studi di Milano 6

Stuff = Points + Vectors + Versors

dir

pos
dir

pos

description of
a (directional) sound emitter

description of
a (directional) microphone

Stuff = Points + Vectors + Versors

dir
pos

description of a spotlight

16

17

3D Video Games
02: Points, Vectors, Versors

2020-03-19

Marco Tarini
Unviersità degli studi di Milano 7

Points, Vectors, Versors:
Internal representation

 n-tuple of scalar values (n is the dimension)
 with n = 3 (rarely, 2 or 4)
 they are the Cartesian coordinates of the point/vector

 e.g.: or:

 note: the same structure is often used
for points, vectors, and versors

class Vector3 {
// fields:
float coords[3];

// methods:
…

}

class Vector3 {
// fields:
float coords[3];

// methods:
…

}

class Vector3 {
// fields:
float x, y, z;

// methods:
…

}

class Vector3 {
// fields:
float x, y, z;

// methods:
…

}

Points, Vectors, Versors:
Internal representation

 one class for points, vectors, and versors
 E.g. done by:

 (and also by: GLSL, HLSL, Eigen, GLM, …)

class Vector3
https://docs.unity3d.com/ScriptReference/Vector3.html

class FVector
http://api.unrealengine.com/INT/API/Runtime/Core/Math/FVector/

19

20

3D Video Games
02: Points, Vectors, Versors

2020-03-19

Marco Tarini
Unviersità degli studi di Milano 8

Caveat:
one type, multiple semantics

 Many libraries/engines choose can opt to use
the same data type for 3D points, 3D vectors, 3D versors,
(plus, sometimes: colors, and more)
 alternatively, a library can use different types, e.g. Vector, Point, Versor

 Still, they should not be considered the same thing
 that’s nothing new:

likewise, we use the same scalar data types (“float”, “doubles”)
with widely different semantics (e.g. “weight”, “volume”, “temperature”…).

 It is up to us to operate on them accordingly
 e.g.: not ok to sum a temperature with a surface
 e.g.: ok to divide a weight by a volume (and get a specific weight)

 which operation does make sense on points, vectors, versors?
 that is, what is their algebra ?

Point, vector, versor algebra

 Hint: before going on, make sure to know / understand
each of the following operation in 3 different ways:

 intuitive / spatial: what does it do conceptually / visually

 algebraic / code: how to compute the result, starting from
(1) the coordinates of the operand(s)
(2) and, additionally, (for products)

the angle between the two operands, and their the lengths

 syntactic: how to write them down
(1) on paper (mathematical notation)
(2) in a programming language (Unity C# lib, Unreal C++ lib, GLSL…)

 Refer to the CG course / the book

⚙
⚙

✎

21

23

3D Video Games
02: Points, Vectors, Versors

2020-03-19

Marco Tarini
Unviersità degli studi di Milano 9

Point, vector, versor algebra

 Hint: also, familiarize with the way the operations behave, i.e. rules such as

(1) commutativity? associativity? (of each operation)
(2) distributivity? (between pairs of operations)
(3) inverse operation? identity element? absorbing element?

 Refer to the CG course / the book

Point and vector algebra
(summary 1/7)

 Difference:
point – point = vector

 Addition:
point + vector = point

24

26

3D Video Games
02: Points, Vectors, Versors

2020-03-19

Marco Tarini
Unviersità degli studi di Milano 10

Point and vector algebra
(summary 2/7)

 Linear operations for vectors
 addition (vector + vector = vector)
 product with a scalar (scaling)

(vector * scalar = vector)
 therefore: interpolation

mix(𝑣଴ , 𝑣ଵ, 𝑡) = 1 − 𝑡 𝑣଴ + 𝑡 𝑣ଵ

 therefore: opposite (flip verse)
(how to: multiply by – 1)

 therefore: difference
(vector – vector = vector)

Point and vector algebra
(summary 3/7)

For vectors:
 Norm
 aka length / magnitude / Euclidean norm
 distance:

length of vector (a – b) = distance between a and b
 triangle inequality

 Normalization
 Input: a vector. Result: a versor
 how to: scale the vector by (1.0 / length)

27

28

3D Video Games
02: Points, Vectors, Versors

2020-03-19

Marco Tarini
Unviersità degli studi di Milano 11

Point and vector algebra
(summary 4/7)

Products between vectors, or between versors

 Dot product (or inner product)
 Output: a scalar

 Cross product (or vector product)
 Output: a vector (note: not a versor)

(exercises in class)

Section 2.2

Section 2.3

Point and vector algebra
(summary 5/7)

 Dot product, useful to:
 test orthogonality (if orthogonal then res == 0)

(between vectors, and/or versors alike)
 sign tells: angle < or > 90°

(between vectors, and/or versors alike)
 versor dot vector: project vector along axis
 versor dot versor: cosine of angle
 versor dot versor: a similarity measure (in -1 +1)
 any vector dot itself: its squared length

29

30

3D Video Games
02: Points, Vectors, Versors

2020-03-19

Marco Tarini
Unviersità degli studi di Milano 12

Point and vector algebra
(summary 6/7)

 Cross product, useful to:
 find orthogonal vectors
 therefore: construct orthonormal basis
 collinearity test (if colinear then res == (0,0,0))
 find (double) area of a 3D triangle
 find normal of a 3D triangle (renormalize it)
 norm of (versor cross versor): module of sin of angle
 analogue in 2D: 2D vector “cross” 2D vector = scalar

(how to: extend with Z=0, get Z of result)
 2D versor cross 2D versor: (signed) sin of angle

MORE
ABOUT

THUS NEXT
TIME

Products and angles

α

v

w

31

32

3D Video Games
02: Points, Vectors, Versors

2020-03-19

Marco Tarini
Unviersità degli studi di Milano 13

Point and vector algebra
(summary 7/7)

 Interpolate between pairs of <something> :
 mix(point , point , t) → point
 mix(vector , vector , t) → vector
 mix(versor , versor , t) → versor

 t is a scalar «weight»
 t = 0 → pick the first one
 t = 1 → pick the second one
 t ∈ (0,1) → get something in between, for example:
 t = 0.5 → just average the two
 t = 0.1 → use almost the first, with just a bit of the second in it
 t < 0 or t > 1 → extrapolate

 Terminology: (in libraries, game engines…)
 interpolate = mix = blend = lerp

a proper
interpolation

specifically linear

Interpolation in general - notes

 Very used in Computer Graphics (e.g. rendering, animation)
 Terminology:

 a x + b y : a linear combination of x and y
 if a+b=1 and a,b ∈[0,1] : a (linear) interpolation of x and y
 if a+b=1 but a,b ∉[0,1] : a (linear) extrapolation of x and y
 a , b : the weights a + b = 1 : weights are a partition of unity

 Generalizes to > 2 objects (a x + b y + c z)
 In interpolations of 2, we can just give one weight t.

 The other is is given by difference. a = t, b = 1-t

 General! All sort of objects can be interpolated
 Intuition: interpolation = a mix between objects
 Let’s analyze case of Points, Vectors, Versors

33

34

3D Video Games
02: Points, Vectors, Versors

2020-03-19

Marco Tarini
Unviersità degli studi di Milano 14

How to interpolate between…

 …two vectors 𝐯଴ and 𝐯ଵ :
 1 − 𝑡 𝐯଴ + 𝑡 𝐯ଵ

 …two points 𝐩଴ and 𝐩ଵ :
 1 − 𝑡 𝐩଴ + 𝑡 𝐩ଵ

which is just a shortcut to express:
𝐩଴ + 𝑡 𝐩ଵ − 𝐩଴

 …two versors 𝐝଴ and 𝐝ଵ :
 1 − 𝑡 𝐝଴ + 𝑡 𝐝ଵ

then renormalize the result (it’s no longer unitary).
Or, use “spherical interpolation” (aka “slerp”)…

Multiplying a point
with a scalar?

Summing two points?
Are these operations

even legal?

Just legal operations
(to-do: check)

Linear
interpolation

But easily
generalizes to > 2

LERP vs SLERP (of versors)

Linear interpolation:

Then, renormalize:

𝐝 = lerp(𝐝଴, 𝐝ଵ, ⅔)

⅔ x ⅓ x

Spherical interpolation:

Not the same result!
 But, close enough
 Even closer when:

𝐝଴ , 𝐝ଵ similar OR t close to ½

 Is it worth the extra
computation cost? 🤔

𝐝 = slerp(𝐝଴, 𝐝ଵ, ⅔)

⅔ α ⅓α

35

36

3D Video Games
02: Points, Vectors, Versors

2020-03-19

Marco Tarini
Unviersità degli studi di Milano 15

The formulas

 LERP + normalization:

 1 − 𝑡 𝐝𝟎 + 𝑡 𝐝ଵ

then re-normalize

 or SLERP:

sin 1 − 𝑡 α

sin(α)
𝐝଴ +

sin 𝑡 α

sin(α)
𝐝ଵ

aka “NLERP”

angle
between
d0 and d1

SLERP: notes

 Applies to any unit vector
including 2D, 3D, and quaternions (see later)

 SLERP can even be used to vectors:
 Compute magnitudes
 Find direction (divide by magnitude, i.e. normalize)
 new dir = SLERP of their directions (unit vector)
 new mag = LERP of their magnitudes (scalars)
 multiply to find final result

37

38

3D Video Games
02: Points, Vectors, Versors

2020-03-19

Marco Tarini
Unviersità degli studi di Milano 16

Note: Generalization to
N - Dimension

 Everything seen in this lecture
generalizes in 2D (for 2D games),
or even in N>3 dimensions

 Exception: the cross product is only defined in 3D
 But in 2D, the problem of finding a vector orthogonal

to one (just one!) given vector is trivial:
“swap coordinates, flip one* sign”
(x,y) orthogonal to (-y,x)

*: which coordinate you flip determines if you rotate
90° clockwise or counterclockwise: try!

recap: Vector Base

 Axes: set of n
lin. ind. vectors
(x,y,z)

 Any vector v
can be expressed in
exactly 1 way as a linar
combination of these
vectors

 The weights are the
coord of v in that base

y

x
z

39

40

3D Video Games
02: Points, Vectors, Versors

2020-03-19

Marco Tarini
Unviersità degli studi di Milano 17

recap: Reference Frame (or Space)

 n axes (vectors)
+
1 origin (point)

 Any vector v :
one linear comb. of the
axes

 Any point p :
origin + one linear
comb. of axes

y

x
z

o

(vector base)

Recap: Orthonormal Frames
Or Cartesian Frame

 Axes are unit vectors
and reciprocally
orthogonal

41

42

3D Video Games
02: Points, Vectors, Versors

2020-03-19

Marco Tarini
Unviersità degli studi di Milano 18

Recap: Handed-ness of a
(Cartesian) frame
 They can be right- or left-handed

Use the same hand to imagine a cross product

𝑥 × 𝑦 = 𝑧
regardless!

z

x

y

z

x

y

𝑥 × 𝑦 = 𝑧

Still no standards in 3D games

 Unity: left-handed: X-right, Y-up, Z-forward
 Unreal: left-handed: X-forward, Y-right, Z-up
 3ds-Max: right-handed, Z-up
 Blender: left-handed, Z-up
 most VR systems: right-handed, Y-up
 OpenGL: (clip space) right-handed, Y-up
 DirectX: (clip space) left-handed, Y-down

personal opinion:
the most standard one,

among
3D modellers too

43

44

3D Video Games
02: Points, Vectors, Versors

2020-03-19

Marco Tarini
Unviersità degli studi di Milano 19

Pro-tip: try making your code
assumption free!

E.g.: to move a pos 2.5 units “to the right”:

Vector3 pos = new Vector3 (…);

pos.x = pos.x + 2.5; // maybe ??
pos.y = pos.y + 2.5; // hmm…??

Vector3 pos = new Vector3 (…);

pos += Vector3.right * 2.5;

Pro-tip: try making your code
assumption free!

E.g.: to move a pos 2.5 units “to the right”:

FVector pos = FVector(…);

pos.X += 2.5f; // maybe ??
pos.Y += 2.5f; // hmm…??

FVector pos (…);

pos += FVector::RightVector * 2.5f;

46

47

