

48

Points, Vectors, Versors:

mini task and exercises

- The following exercises (done in the classroom) use the vector
- In some of them, the solution is given in full
- In other, only a trace of the solution is given
- General schema for solutions:
- Identify input and output (and it's type)
- Write the equations driven by the intuitive/spatial understanding of the operations,
- manipulate the equations according to the rules, extract the solution

Points, Vectors, Versors: mini task and exercises

- Try to write pseudo-code that solves the proposed problems, using
- An existing library (GLM, Unity, Unreal) GLSL..
- Your own hand-made library for points/vectors/versor

Point to point distance

"When the player in position p is closer than k to a powerup in pos q, then the powerup is collected"

- Data: p, q points, k versor
- Test: $\quad\|\mathrm{p}-\mathrm{q}\|<k$
- Optimizing: $\quad\|\mathrm{p}-\mathrm{q}\|^{2}<k^{2}$
- Pseudo-code example:

```
vec3 p,q;
scalar k;
if ( dot(p-q,p-q) < k*k ) then /*collect*/
```


Orthonormal base completion

"I have a ony two axes \hat{x} and \hat{y} of an orthonormal bases, how do I find the third vector $\hat{\mathbf{z}}$?"

- Data: \hat{x}, \hat{y} versors
- Hypotheses: \hat{x} and \hat{y} are already orthogonal
- Variant: \hat{y} is not exactly orthogonal to \hat{x}, but I want to change it the least to make it orthogonal ($\widehat{\mathrm{x}}$ is to be kept constant) (see next problem)

52

Vector orthogonalization

"Find a versor \hat{u} ' that is ortogonal to a given $\hat{\mathrm{n}}$ such that it is as similar as possible to a given versor $\hat{u}^{\prime \prime}$

Solution: $\quad \hat{u}^{\prime}=\hat{n} \times \hat{u} \times \hat{n}$

```
    vec3 n,u;
```

 \(\mathrm{u}=\operatorname{cross}(\operatorname{cross}(\mathrm{n}, \mathrm{v}), \mathrm{n})\);

Ray-sphere intersection

"I shoot a laser from p to direction $\hat{\mathrm{d}}$. Do I hit a sphere in position q of radius r ? Where?"

- Data: p, q points, r scalar, \mathfrak{d} versor
- Trace:
- Hit-point is s on laser ray:

$$
\mathrm{s}=\mathrm{p}+k \overrightarrow{\mathrm{v}}, \text { for some unknown scalar } k \geq 0
$$

- Hit-point is s on sphere:

$$
\|q-\mathrm{s}\|=r \quad \leftrightarrow \quad(\mathrm{q}-\mathrm{s}) \cdot(\mathrm{q}-\mathrm{s})=r^{2}
$$

- Combine the two equations (substitute s in second), solve for k (it's a $2^{\text {nd }}$ degree equation), test that k exists and that it is >0)

Shooting a walking target (with a finite speed bullet) 1/2

"I shoot a bullet from p with velocity $\overrightarrow{\mathrm{v}}$. At which time the bullet will be the closest to a target currently in position q and moving with velocity $\overrightarrow{\mathrm{w}}$?
Where will bullet and target be, at that point?"

- Data: p, q points, \vec{v} and \vec{w} vectors
- Hypothesis: nothing accelerates (everything keeps moving at a constant speed)

Shooting a walking target

(with a finite speed bullet) 2/2

Trace

- Position of bullet at time $t: \mathrm{p}+t \overrightarrow{\mathrm{v}}$
- Position of target at time $t: \mathrm{q}+t \overrightarrow{\mathrm{w}}$
- Squared distance between the two at time t :

$$
\begin{aligned}
& \|(\mathrm{p}+t \overrightarrow{\mathrm{v}})-(\mathrm{q}+t \overrightarrow{\mathrm{w}}) \|^{2} \\
&= \\
&\|(\mathrm{p}-\mathrm{q})+t(\overrightarrow{\mathrm{v}}-\overrightarrow{\mathrm{w}})\|^{2}
\end{aligned}
$$

- Work on formulas, derive for t, equate derivative to 0 , extract t

Ray-Plane intersection

" I shoot a laser from p in direction d toward a plane which contains points abc. Which point q do I hit?"

- Hypotheses: a b c are not colinear (not on a line)
- Trace:
- Find vector $\overrightarrow{\mathrm{n}}$ orthogonal to plane, use cross product (magnitude and verse are not important)
- Define q as point on the laser (see Ray-Sphere inters.)
- Define q as a point on the plane (hint: the vector connecting it to any other point on the plane is orthogonal to $\overrightarrow{\mathrm{n}}$)
- Combine the two equations into one
- Wxtract the incognita

Sub problem: surface normal

"I have three points on abcon a plane: find the normal \hat{n} of this plane (a versor)"

- Trace:
find any two
different vectors on (i.e. parallel to)
the plane...

Vision cones

"A guard has eyes in position q and looks in direction $\widehat{\mathrm{d}}$.
Does it spot a fly in
position p, if his cone
of vision is 60° wide?"

- Hypotheses: no occlusions
- Trace:
- For angles α, β in $0 . .90^{\circ}: \alpha<\beta \leftrightarrow \cos (\alpha)>\cos (\beta)$
- Find cosine of angle between view direction and the vector connecting q to p
- Determine if this cosine is $>\cos \left(60^{\circ} / 2\right)$

