03: Rotations in 3D games - Part I

1

Course Plan

lec. 1: Introduction
lec. 2: Mathematics for 3D Games
lec. 3: Scene Graph
lec. 4: Game 3D Physics
lec. 5: Game Particle Systems
lec. 6: Game 3D Models \bigcirc
lec. 7: Game Textures
lec. 8: Game 3D Animations
lec. 9: Game 3D Audio
lec. 10: Networking for 3D Games
lec. 11: Artificial Intelligence for 3D Games
lec. 12: Game 3D Rendering Techniques
2

03: Rotations in 3D games - Part I

4

3D rotations:
how many dimension?

(clearly, they include the identity too)

6

Compare with:
representing trans/ations in 3D

- Trivial:
displacement vector (3 scalars)!
- perfect under all criteria (exercise: verify)

8

Compare with:

representing rotations in 2D

- Trivial: one angle (a dimensionless scalar)
- perfect under all criteria
(exercise: verify)
- (only choice: degrees or radiants?)

$$
\left[0,360^{\circ}\right) \quad[0,2 \cdot \mathrm{Pi})
$$

4. caveat: interpolation! «pick the shortest path» $\operatorname{mix}\left(25^{\circ}, 335^{\circ}, 0.5\right)=0$ (but, still easy to do)

9

Compare with:
representing rotations in 2D

- Compute angle \rightarrow vector

10

03: Rotations in 3D games - Part I

Compare with:

representing rotations in 2D

- Compute angle \leftarrow vector

pro tip: use $\operatorname{atan} 2$ in any language: $\alpha=\operatorname{atan} 2(y, x)$
11

Rotations as 3×3 matrices (9 scalars)

- after all, rotations are linear operators
- Rot $=3 \times 3$ submatrix of a 4×4 rotation affine matrix

- Reminder: R is orthonormal, with det $=+1$

Rotations as 3×3 matries (9 scalars)

- Wasteful in RAM (9 scalars, versus a minimum of 3)
- Easy to apply (matrix-vector prod: 9 mults)
- Relat. easy to compose (matrix-matrix prod: $27 \times$ mult)
- Immediate to invert (just transpose)
- Interpolate: troubles

Rotations as 3×3 matrices (9 scalars): compositions

- Multiplying matrices cumulates the rotation
- remember: neither matrix-matrix product, nor composition of 3 D rotations, is commutative!
- e.g.: $R_{\text {TOT }}=R_{0} \cdot R_{1}$
- rotate as R_{1} followed by R_{0}
- with $R_{0} \cdot R_{1}$ rotation matrices
- i.e. orthonormal matrices with det $=1$
- $\mathrm{R}_{\text {тот }}$ is a rotation matrix too, in theory
\triangle in practice, approximation errors can break that
- especially after long sequences of compositions.

03: Rotations in 3D games - Part I

16

Rotations as 3×3 matrices (9 scalars)

- Nice plus:
its three columns are
the three versors representing
the X, Y, Z axis of the local space
in global space
- i.e. the world-space versors
representing local right, upward, forward (in Unity) or local forward, right, upward (in Unreal engine)

Rotations as 3×3 matrices exercise: "look-at" rotation

- Given observer position A and observed point B
- or, directly, a look direction $v=(B-A) /\|B-A\|$
find the rotation (i.e. the orientation)
for a character who must be looking in that direction
- Incomplete specification!

We also need in input: a «target up-vector» u

- the character wants to keep its up-direction as similar as possible to u, while looking toward B
- Usually, the (world) up-vector, e.g. (in Unity) $(0,1,0)$
- Very useful for characters looking at something / facing toward something

Rotations as 3×3 matrices exercise: "look-at" rotation

- Solution:
- find the x, y, z directions of this local character
- note: they must be 3 reciprocally orthogonal versors
- make them the columns of the 3×3 rotation matrix
- for example (using Unity conventional axis names):
- $z=v$ (easy! the forward direction is exactly $v!$)
- $y=u$? NO! it wouldn't be necessarily orthogonal with z
- but, $x=u \times z /\|u \times z\|$ (note the re-normalization)
i.e. the right vector is orthogonal to both z and u
- finally, $y=z \times x$

Representations of 3D rotations

- 3x3 matrices
- Euler angles
- the most intuitive way to express a rotation
- e.g., well understood by digital artists!

Rotations as Euler angles (3 scalars)

- Any 3D rotation can be expressed as:
- a rotation around X axis (by α degrees), followed by:
- a rotation around Y axis (by β degrees), followed by:
- a rotation around Z axis (by γ degrees):
- Angles $\alpha \beta \gamma$:
"Euler angles" of a specific rotation
this order (X-Y-Z) is chosen arbitrary
- (therefore: its "coordinates")

03: Rotations in 3D games - Part I

26

Rotations as Euler angles (3 scalars)

- Is it 1:1?
- 1 rotation $\Leftrightarrow 1$ euler angle triplet ?
- Almost
- assuming angles are properly bounded (exercise: how?)
- Ugly exception:
"GIMBAL LOCK"
- when 1st rotation makes the axes of the next two axes coincide
- this cannot be avoided, no matter how axes are chosen

27

Rotations as Euler angles (3 scalars)

- Conciseness: perfect! 3 scalars for 3 DOF
- Application : a bit work-intensive
- three rotations in succession
- Interpolation : you can do that...
- just interpolate the three angles
. (remember to always "pick the shortest path" whenever interpolating angles: that is, must take in account the $\alpha \approx \alpha+360 k$ equivalence)
...but results won't always be nice!
- Cumulate / invert: not easy nor immediate...

from: euler angles

to: 3×3 matrix

- Easy to write down!

$$
\mathrm{M}=\mathrm{R}_{\mathrm{z}}(\gamma) \cdot \mathrm{R}_{\mathrm{y}}(\beta) \cdot \mathrm{R}_{\mathrm{x}}(\alpha)
$$

- but requires several sin / cos evaluations
- What about the vice-versa?
- a medium difficulty exercise
- not very convenient:
many inverse trigonometric functions

Comparing representations (so far)		
	3x3 Matrix	Euler Angles
Space efficient? (in RAM, GPU, storage...)	(9.) 9 scalars	(3) 3 Scalars
- Apply (to points/vectors)	- 9 products (3 dot products)	
is Invert - (produce inverse)	(3) Just transpose	©
$\begin{aligned} & \vec{c} \text { Cumulate } \\ & \underset{\omega}{\omega} \text { (with another rotation) } \end{aligned}$		-
Interpolate $\begin{array}{l}\text { I } \\ \text { (with another rotation) }\end{array}$	©	
Intuitive? (e.g. to manually set)	(-) ? ? ?	
Notes...	$\begin{gathered} \text { Free extra } \\ \text { skew + scale! } \end{gathered}$	

Representations of 3D rotations

- 3x3 matrices
- Euler Angles
- Axis + angle
- Most common way in physics (and game physics)

Rotations as axis \& angle

- Any rotation can be expressed as:
- one rotation by some angle around some axis

- Angle: a scalar
- Axis: a versor (3 scalars)
- note: the axis is considered to pass around the origin. For the more general case, combine with translations.

Rotations as axis \& angle

- Compactness: good, 4 scalars
- Just one more than bare minimum
- Ease of application: not too good : $^{\circ}$
- Ways include: switch to 3×3 matrix (exercise: how to) or to quaternion: see later
- Invert: super easy / quick
- just flip the angle sign or the axis vector
- question: what if both? answer: Rotation is inverted twice: it's back to the same rotation again!

Rotations as axis \& angle: equivalent representations

- Therefore: $\left(a_{x}, a_{y}, a_{z}, \alpha\right)$ and $\left(-a_{x},-a_{y},-a_{z},-\alpha\right)$
represent the same rotation
- Any rotation has two equivalent representations in this format
- except the identity, which has infinitely many: angle $\alpha=0$, with any axis a_{x}, a_{y}, a_{z}
- This is always a bit inconvenient
- Complicates interpolation ("shortest path" problems)
- Complicates testing for equality/similarity, etc.

Rotations as axis \& angle

- Compositing rotations:
not at all immediate or easy to do $\%$
- Interpolating rotations: very good!
- Just interpolate axis and angle separately
- Some caveat:

A 1) shortest path for axes: first, flip either rotation (both its axis \& angle) when this makes the two axes closer (how to test?)
2) shortest path for angles: as usual, angles must then be interpolated... «modulo 360° »,
3) interpolate between axes requires SLERP or NLERP (when interpolating versors)
4) beware degenerate cases (opposite axes); point 1 avoids this

- best results! Usually produces the "right" rotation

35

Rotations as axis and angle, variant: as axis angle

- axis: v (versor, $|v|=1)$
- angle: α (scalar)
- can be represented as one vector v^{\prime} (3 scalars) $v^{\prime}=\alpha v$
- angle $\alpha=\left|v^{\prime}\right|$
- axis $v=v^{\prime} / \alpha$
- note: when $\alpha=0$, the axis is lost... it's ok, we don't need it!
- more compact, but fairly equivalent
- actually, better: we now have only 1 representation per rotation (why?) ... including the identity (why?)

Axis and angle - exercise the «from-to» rotation

- Problem: given a pair of versors v and w, ($v=$ from and $w=$ to) find the minimal rotation that brings v into w minimal angle
- useful problem in several contexts \qquad e.g. Al aiming a bazooka,
- Solution:
- the axis a is found as $v \times w$ (renormalizing it)
- of the angle α, we know that the cosine is $(v \cdot w)$ and the sine is $\|v \times w\|$. so $\alpha=\operatorname{atan} 2(\|v \times w\|, v \cdot w)$

Representations of 3D rotations

- 3×3 matrices
- Euler angles
- Axis + Angle
- Quaternions Next lecture!

