Representations of 3D rotations

- 3×3 matrices
- Euler angles
- Axis + Angle
- Quaternions This lecture!

40

A flashback:

Complex Numbers in a nutshell 1/3

- It all starts with a «fantasy» assumption, which is:
there is an imaginary number i
such that $i^{2}=-1$
- And for any other purpose, i behaves just like a (non-zero) Real number
- Consequences: real part $\int^{\text {imaginary part }}$
- We now have number of the form $a+b i$, with $a, b \in \mathbb{R}$, called complex numbers (the set is \mathbb{C})
- The algebra of complex numbers (how to sum, multiply, invert them...) is simply determined by the «fantasy» assumption above

A flashback:

Complex Numbers in a nutshell 2/3

- For example, sum: real part \quad imaginary part

$$
(a+b i)+(c+d i)=(a+c)+(b+d) i
$$

- For example, product (remembering $i^{2}=-1$):

$$
(a+b i) *(c+d i)=(a c-b d)+(a d+b c) i
$$

- For example, inverse (check):

$$
(a+b i)^{-1}=\frac{(a-b i)}{a^{2}+b^{2}}
$$

- What is interesting to us is the geometric interpretation of these objects \& operations

A flashback:

Complex Numbers in a nutshell 3/3

- Geometric interpretation:
- $a+b i$ represents the vector/point (a, b)
- Complex sum is vector sum

- Complex conjugate is mirroring with the Real axis (horizontal)
- Product is... add angles (with Real axis), multiply magnitudes
- Therefore,
- product with a unitary (magnitude $=1$) complex number is a pure 2 D rotation
- A complex number $c \in \mathbb{C}$ with $\|c\|=1$ represents a 2 D rot; multiply vector $(x+y i)$ with c means to rotate it

Wouldn't it be cool to have the same for 3D rotations?

Quaternions

- New «fantasy» assumption:

	\times	i	j	k
as a				
table:	i	-1	$+k$	$-j$
	j	$-k$	-1	$+i$
	k	$+j$	$-i$	-1

there are three different "imaginary"

$$
i j=k, \quad j i=-k
$$ numbers i, j, k such that:

$$
j k=i, \quad j k=-i
$$

- for any other purpose,

$$
i^{2}=k^{2}=j^{2}=-1
$$

$$
k i=j, \quad k j=-j
$$

i, j, k behave like real numbers

- Consequences:
- We now have number of the form $a+b j+c k+d$, with $a, b, c, d \in \mathbb{R}$, called Quaternions (their set is \mathbb{H})
- The algebra of quaternions (how to sum, multiply, invert them...) is simply determined by the «fantasy» assumption
- Again, what is interesting to us is the geometric interpretation...

Quaternions: how to write them

 (equivalently)- Algebraic form: $a i+b j+c k+d$
- often, omitting the zeros, e.g. $i+2 k$ is a quaternion
- As vectors of $\mathbb{R}^{4}:(a, b, c, d)$
- As vector \& scalar pair: (\vec{v}, d)

- Conjugate of a quaternion: invert the sign of the imaginary part

Quaternions: operations how-to

$$
\mathrm{q} \in \mathbb{H} \quad \mathrm{q}=a i+b j+c k+d
$$

- Sum, Scale, Interpolate, etc.: trivial
- same as 4D vectors
- Magnitude

$$
\begin{aligned}
& \|\mathrm{q}\|=\sqrt{a^{2}+b^{2}+c^{2}+d^{2}} \\
& \|\mathrm{q}\|^{2}=a^{2}+b^{2}+c^{2}+d^{2}
\end{aligned}
$$

- «unitary» if it's 1
- same as 4D vectors

Quaternions: operations how-to

$$
\mathrm{q} \in \mathbb{H}
$$

$$
\mathrm{q}=a i+b j+c k+d
$$

- Product: just apply «fantasy» assumptions
- Observe: product is not commutative (nor anticommut.)
- (see next 3 slides for the math)
- «Coniugate»:
- like for complex numbers:

$$
\overline{\mathrm{q}}=-a \mathrm{a} i-b j-c k+d
$$

- Inverse: (like for complex numbers) $\mathrm{q}^{-1}=\overline{\mathrm{q}} /\|\mathrm{q}\|^{2}$
- For unitary quat, it's just the coniugate

03: Rotations in 3D games - Part II

50

51

52

Quaternions:

Geometric Interpretation!

- A quaternion $\mathrm{q}=(\overrightarrow{\mathrm{v}}, d)$ represents:
- the 3D point or vector $\overrightarrow{\mathrm{v}}$, when $d=0$
- a 3 D rotation, when q is unit, i.e. $\|\mathrm{q}\|^{2}=\|\overrightarrow{\mathrm{v}}\|^{2}+d^{2}=1$
- (neither, otherwise)
- If q is a rotation and p is a point $(q, p \in \mathbb{H})$ then...
- $\mathrm{q} \cdot \mathrm{p} \cdot \overline{\mathrm{q}}$ is the rotated point / vector
- $\overline{\mathrm{q}}$ is the inverse rotation
- $\mathrm{q}_{0} \cdot \mathrm{q}_{1}$ is the composited rotation (first q_{1} then q_{0})
- (so, $\overline{\mathrm{q}} \cdot \mathrm{p} \cdot \mathrm{q}$ is the pt rotated... in the other direction)

Compositing Quaternions:

why it works
$q_{0}, q_{1}, p \in \mathbb{H}$
$\mathrm{q}_{0}, \mathrm{q}_{1}$ represent rotations p represents a point
p rotated by q1
$\mathrm{q}_{0} \cdot\left(\mathrm{q}_{1} \cdot \mathrm{p} \cdot \overline{\mathrm{q}}_{1}\right) \cdot \overline{\mathrm{q}}_{0}$
product is associative
(like for complex numbers)
$\left(\mathrm{q}_{0} \cdot \mathrm{q}_{1}\right) \cdot \mathrm{p} \cdot\left(\overline{\mathrm{q}}_{1} \cdot \overline{\mathrm{q}}_{0}\right)$

$$
\left(q_{0} \cdot q_{1}\right) \cdot p \cdot \overline{\left(q_{0} \cdot q_{1}\right)}
$$

commutative)

3D Rotations as Quaternions

- quaternion q representing the 3D rotation of angle α around axis â :
- $\mathrm{q}=\left(\sin \left(\frac{\alpha}{2}\right) \hat{\mathrm{a}}, \cos \left(\frac{\alpha}{2}\right)\right)$
that is
- $\mathrm{q}=\sin \left(\frac{\alpha}{2}\right) \hat{\mathrm{a}}_{x} i+\sin \left(\frac{\alpha}{2}\right) \hat{\mathrm{a}}_{y} j+\sin \left(\frac{\alpha}{2}\right) \hat{\mathrm{a}}_{z} k+\cos \left(\frac{\alpha}{2}\right)$
- Observe that $\|q\|^{2}=1$

3D Rotations as Quaternions:
 a problem

- Around axis â by angle α :

$$
\mathrm{q}=\left(\sin \left(\frac{\alpha}{2}\right) \hat{\mathrm{a}}, \cos \left(\frac{\alpha}{2}\right)\right)
$$

- Around axis $-\hat{a}$ by angle $(-\alpha)$: (it's the same rotation!)

$$
\mathrm{q}^{\prime}=\left(-\sin \left(\frac{-\alpha}{2}\right) \hat{\mathrm{a}}, \cos \left(\frac{-\alpha}{2}\right)\right)=\mathrm{q}
$$

Good! But:

- Around axis â by angle $\left(\alpha+360^{\circ}\right)$: (it's the same rotation!)

$$
\begin{aligned}
\mathrm{q}^{\prime \prime} & =\left(\sin \left(\frac{\alpha}{2}+180^{\circ}\right) \hat{\mathrm{a}}, \cos \left(\frac{\alpha}{2}+180^{\circ}\right)\right)= \\
& =\left(-\sin \left(\frac{\alpha}{2}\right) \hat{\mathrm{a}},-\cos \left(\frac{\alpha}{2}\right)\right)=-\mathrm{q}
\end{aligned}
$$

- Conclusion:
quaternion q and quaternion - q encode the same rotation

3D Rotations as Quaternions:
 a problem

Given a quaternion which is a rotation:

- Flip its real part: invert rotation
- Flip its imaginary part (conjugate): same
- Flip everything: same rotation

Every rotation is encoded by two different quaternions.

Interpolating two quaternions representing rotations

Good results, but two caveats:
©Take the "shortest path" (as usual):
flip $2^{\text {nd }}$ quaternion first, if this makes them closer

- Distance defined as dot product in 4D (they are 4D unit vectors!)
\triangle Loss of normality
- Needs re-normalization (NLERP),
- Or SLERP (again, consider them 4D unit vectors)

Quaternions: exercises

- Which quaternion encodes a turnabout?
- (ita: «un dietrofront»: turning 180° around the up vector?)
- Apply that quaternion to rotate a point in (x, y, z)
- Use plain quaternion algebra, and algebraic notation
- Which quaternion encodes the identity rotation?
- Is it the only one? If not, which other does?
- Verify by applying it (or them)
- Which quaternion encodes a turn of 90° to the left?
- Uses your previous two answers to find the quat. encoding turn 45° to the left, by using interpolation
- Do you need SLERP in this case? Is NLERP enough? Why?
- Verify the solution is correct using the axis-angle formula

Quaternions as rotations

- Almost as compact as possible to store (4 scalars)
- Trivial to invert
- Fast to composite
- Fast to apply
- Easy to ensure they are still rotations (just normalize)
- Even after long sequences of cumulations, unlike matrices
- Behaves well under interpolation
- Even with just NLERP - better with SLERP
- The favourite representation in 3D games
- but, other solutions still useful in one context or another

Recap: representing rotations		
1/2	3x3 Matrix	Euler Angles
Space efficient? (in RAM, GPU, storage...)	-9 9 scalars	(3) 3 scalars (exensmalnty
- Apply - (to points/vectors)	(\%) 9 9products $(3$ dotot roducts)	
	(9) super easy	(0)
$\left\lvert\, \begin{aligned} & \vec{c} \text { Composite } \\ & \frac{0}{\circ} \text { (with another rotation) } \end{aligned}\right.$	(-0) maticis miticication	
$\begin{aligned} & \text { Interpolate } \\ & \boldsymbol{\Psi} \\ & \text { (with another rotation) } \end{aligned}$	©	
Intuitive? (e.g. to manually set)	(-) ? ? ?	$\underbrace{\substack{\text { col } \\ \text { vax } \\ \text { puth }}}$
Notes...	$\begin{gathered} \text { Free extra } \\ \text { skew + scale! } \end{gathered}$	

62

Recap: representing rotations
2/2
axis + angle
(unitary) quaternion

Space efficient?
(in RAM, GPU, storage...)

O Apply
(to points/vectors)

63

And the winner is...

- Obviously, the quaternions
- because they are more efficient with each operation
- Obviously, the Euler angles
- because they are the most intuitive (and compact)
- Obviously, angle-and-axis
- because they have the best MIX (easy + most natural results)
- Obviously, the 3×3 matrices
- because they can also express (non uinf) scaling, and skewing
- because its three columns are the X, Y, Z axes of the local space (useful)

67

What defines a rotation, for you?
«Roll, pitch, and yaw!»
then you are... a pilot, or an astronaut
«X-angle, Y-angle, and Z-angle! »
then you are... a digital artist (an animator or a scener)
"An angle! »
then you are... a flatland citizen
"A vector! the dir is the axis the magnitude the angle» then you are... a physicist
«A 3x3 matrix! the submatrix of a 4×4 transform » then you are... a computer graphicist, or a Graphics API
«A quaternion! »
then you are... a game developer 8 .

GUI: how to author rotations in 3D?

- Typical way: rotation gizmo
- (also: «arcball» or «trackball»)
- 3 handles to control the three Euler angles
- or "free", drag-n-drop mode (trackball metaphor)

70

GUI: how to author scalings in 3D?

- scale gizmo
- 3 handles for anisotropic scalings

1 handle (middle) for uniform scalings

convention: \quad Red $=X \quad$ Green $=Y \quad$ Blue $=Z$
71

Rotations in - unity (class Quaternıon)

- In the GUI :
- See / set as Euler Angles (intuitive) (degrees)
- Internally:
- Quaternions
- In the C\# scripts:
- programmer choice: quaternion, euler, axis+angle, matrices thanks to C\# «properties» (setter/getter methods in disguise)
- gives the illusion to be whichever kind you think they are

Rotations in
 ENGINE

fields: W X Y Z
Class FQúat :

- convert from: $\quad\left\{\begin{array}{l}\text { Class FRotator } \\ \text { for "nautical" Euler angles: } \\ \text { fields: Pitch Roll Yaw }\end{array}\right.$
- axis+angle, matrix4x4, FRotator, euler (vec3) (by constructors)
- Euler angles (makeFromEuler method)
- From-to vector pairs (FindBetween method)
- convert to:
- ToAxisAndAngle, Euler, Rotator,
- matrix columns GetAxis(X|Y|Z)
- also, with names: Get(Forward|Right|Up)Vector,
- methods: invert with Inverse, blend with FastSlerp
or FastSlerpFullPath (no shortest path) apply with RotateVector / UnrotateVector composite with operator *

73

Rotations in OpenGL

- In the «old school»API:
(and now in many similar libraries)
- API: gIRotate3f
- takes: angle+axis
- Internally:
- matrices
- jointly as any other spatial transform
- separated in MODEL+VIEW+PROJECT transform

