
3D Video Games
03: Rotations in 3D games - Part II

2020-03-30

Marco Tarini
Università degli studi di Milano 1

Representations of
3D rotations

3x3 matrices
Euler angles
Axis + Angle
Quaternions This lecture!

A flashback:
Complex Numbers in a nutshell 1/3

 It all starts with a «fantasy» assumption, which is:
there is an imaginary number i
such that 𝒊 = −1

 And for any other purpose, 𝑖 behaves just like
a (non-zero) Real number

 Consequences:
 We now have number of the form 𝑎 + 𝑏 𝑖,

with 𝑎, 𝑏 ∈ ℝ , called complex numbers (the set is ℂ)
 The algebra of complex numbers (how to sum, multiply,

invert them…) is simply determined by the «fantasy»
assumption above

real part imaginary part

40

41

3D Video Games
03: Rotations in 3D games - Part II

2020-03-30

Marco Tarini
Università degli studi di Milano 2

A flashback:
Complex Numbers in a nutshell 2/3

 For example, sum:
𝑎 + 𝑏 𝑖 + 𝑐 + 𝑑 𝑖 = 𝑎 + 𝑐 + 𝑏 + 𝑑 𝑖

 For example, product (remembering 𝑖 = −1):
𝑎 + 𝑏 𝑖 ∗ 𝑐 + 𝑑 𝑖 = 𝑎𝑐 − 𝑏𝑑 + 𝑎𝑑 + 𝑏𝑐 𝑖

 For example, inverse (check):

𝑎 + 𝑏 𝑖 =
𝑎 − 𝑏 𝑖

𝑎 + 𝑏

 What is interesting to us is the
geometric interpretation of these objects & operations

real part imaginary part

the «coniugate»
of (a + b i)

the squared
«magnitude»
of (a + b i)

A flashback:
Complex Numbers in a nutshell 3/3

 Geometric interpretation:
 𝑎 + 𝑏 𝑖 represents the vector/point 𝑎, 𝑏

 Complex sum is vector sum
 Complex conjugate is mirroring with the Real axis (horizontal)
 Product is… add angles (with Real axis), multiply magnitudes

 Therefore,
 product with a unitary (magnitude = 1) complex number

is a pure 2D rotation
 A complex number 𝑐 ∈ ℂ with 𝑐 = 1 represents a 2D rot;

multiply vector 𝑥 + 𝑦 𝑖 with 𝑐 means to rotate it

Wouldn’t it be cool to have the same for 3D rotations?

42

43

3D Video Games
03: Rotations in 3D games - Part II

2020-03-30

Marco Tarini
Università degli studi di Milano 3

Quaternions
 New «fantasy»

assumption:
there are three
different “imaginary”
numbers i , j , k such that:
 for any other purpose,

𝑖, 𝑗, 𝑘 behave like real numbers

 Consequences:
 We now have number of the form 𝑎 𝑖 + 𝑏 𝑗 + 𝑐 𝑘 + 𝑑,

with 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℝ , called Quaternions (their set is ℍ)
 The algebra of quaternions (how to sum, multiply, invert

them…) is simply determined by the «fantasy» assumption
 Again, what is interesting to us is the geometric interpretation…

real partimaginary parts

as a
table:

𝑖 = 𝑘 = 𝑗 = −1
𝑖𝑗 = 𝑘 , 𝑗𝑖 = −𝑘
𝑗𝑘 = 𝑖 , 𝑗𝑘 = −𝑖
𝑘𝑖 = 𝑗 , 𝑘𝑗 = −𝑗

𝑖 𝑗

𝑘

× i j k

i -1 +k -j

j -k -1 +i

k +j -i -1

Quaternions: how to write them
(equivalently)

 Algebraic form: 𝑎 𝑖 + 𝑏 𝑗 + 𝑐 𝑘 + 𝑑

 often, omitting the zeros, e.g. 𝑖 + 2 𝑘 is a quaternion

 As vectors of ℝ : (𝑎 , 𝑏 , 𝑐 , 𝑑)

 As vector & scalar pair: (�⃗� , 𝑑)

 Conjugate of a quaternion: invert the sign of the
imaginary part

𝑎
𝑏
𝑐

imaginary part,

a vector

real part,
a scalar

45

46

3D Video Games
03: Rotations in 3D games - Part II

2020-03-30

Marco Tarini
Università degli studi di Milano 4

Quaternions: operations how-to

 Sum, Scale, Interpolate , etc.: trivial
 same as 4D vectors

 Magnitude

q = 𝑎 + 𝑏 + 𝑐 + 𝑑

q = 𝑎 + 𝑏 + 𝑐 + 𝑑

 «unitary» if it’s 1
 same as 4D vectors

q ∈ ℍ q = 𝑎𝑖 + 𝑏𝑗 + 𝑐𝑘 + 𝑑

Quaternions: operations how-to

 Product: just apply «fantasy» assumptions
 Observe: product is not commutative (nor anticommut.)
 (see next 3 slides for the math)

 «Coniugate»:
 like for complex numbers: q = −𝑎𝑖 − 𝑏𝑗 − 𝑐𝑘 + 𝑑

 Inverse: (like for complex numbers) q = q / q

 For unitary quat, it’s just the coniugate

q ∈ ℍ q = 𝑎𝑖 + 𝑏𝑗 + 𝑐𝑘 + 𝑑

Flip imaginary parts

47

48

3D Video Games
03: Rotations in 3D games - Part II

2020-03-30

Marco Tarini
Università degli studi di Milano 5

×
a
i

+
b
j

+
c
k

+ d

e i
-1
ae

+
k

be
+

-j
ce

+
i

de
+

+

f j
-k
af

+
-1
bf

+
i
cf

+
j

df
+

+

g k
j

ag
+

-i
bg

+
-1
cg

+
k
gf

+

+

h
i

ah
+

j
bh

+
k

ch
+ hd

Quaternion Product

x
a
i

+
b
j

+
c
k

+ d

e i
-1
ae

+
k

be
+

-j
ce

+
i

de
+

+

f j
-k
af

+
-1
bf

+
i
cf

+
j

df
+

+

g k
j

ag
+

-i
bg

+
-1
cg

+
k

dg
+

+

h
i

ah
+

j
bh

+
k

ch
+ hd

Quaternion Product

(w , h)
.

(v , d)
=

(w d + v h + v×w
,

h d – v∙w)

some vector

some scalar

v

w

×
a
i

+
b
j

+
c
k

+ d

e i
-1
ae

+
k

be
+

-j
ce

+
i

de
+

+

f j
-k
af

+
-1
bf

+
i
cf

+
j

df
+

+

g k
j

ag
+

-i
bg

+
-1
cg

+
k

dg
+

+

h
i

ah
+

j
bh

+
k

ch
+ hd

50

51

3D Video Games
03: Rotations in 3D games - Part II

2020-03-30

Marco Tarini
Università degli studi di Milano 6

x
a
i

+
b
j

+
c
k

+ d

e i
-1
ae

+
k

be
+

-j
ce

+
i

de
+

+

f j
-k
af

+
-1
bf

+
i
cf

+
j

df
+

+

g k
j

ag
+

-i
bg

+
-1
cg

+
k

dg
+

+

h
i

ah
+

j
bh

+
k

ch
+ hd

Quaternion Product

(w , h)
.

(v , d)
=

(w d + v h + w×v
,

h d – w∙v)

v

w

×
a
i

+
b
j

+
c
k

+ d

e i
-1
ae

+
k

be
+

-j
ce

+
i

de
+

+

f j
-k
af

+
-1
bf

+
i
cf

+
j

df
+

+

g k
j

ag
+

-i
bg

+
-1
cg

+
k

dg
+

+

h
i

ah
+

j
bh

+
k

ch
+ hd

Quaternions:
Geometric Interpretation!

 A quaternion q = (v , 𝑑) represents :
 the 3D point or vector v , when 𝑑 = 0

 a 3D rotation, when q is unit, i.e. q = v + 𝑑 = 1
 (neither, otherwise)

 If q is a rotation and p is a point (q, p ∈ ℍ) then…
 q ⋅ p ⋅ q is the rotated point / vector
 q is the inverse rotation
 q ⋅ q is the composited rotation (first q then q)

 (so, q ⋅ p ⋅ q is the pt rotated… in the other direction)

52

53

3D Video Games
03: Rotations in 3D games - Part II

2020-03-30

Marco Tarini
Università degli studi di Milano 7

Compositing Quaternions:
why it works

q , q , p ∈ ℍ
q , q represent rotations
p represents a point

 r̅ ⋅ s = s ⋅ r
(rules of quaternions)

(remember: product is not
commutative)

product is associative
(like for complex numbers)

p rotated by q1

p rotated by q1, rotated by q0

q ⋅ (q ⋅ p ⋅ q) ⋅ q

=

(q ⋅ q) ⋅ p ⋅ (q ⋅ q)

=
(q ⋅ q) ⋅ p ⋅ (q ⋅ q)

3D Rotations as Quaternions

 quaternion q representing the 3D rotation
of angle α around axis a :

 q = sin a , cos

that is

 q = sin a 𝑖 + sin a 𝑗 + sin a 𝑘 + cos

 Observe that q = 1

verify

54

55

3D Video Games
03: Rotations in 3D games - Part II

2020-03-30

Marco Tarini
Università degli studi di Milano 8

3D Rotations as Quaternions:
a problem
 Around axis a by angle α :

q = sin
α

2
a , cos

α

2

 Around axis −a by angle (−α) : (it’s the same rotation!)

q = −sin a , cos = q

Good! But:
 Around axis a by angle (α + 360°) : (it’s the same rotation!)

q = sin + 180° a , cos + 180° =

= −sin a , −cos = - q

 Conclusion:
quaternion q and quaternion −q encode the same rotation

same quaternion :-)

different quaternion :-(

3D Rotations as Quaternions:
a problem

Given a quaternion which is a rotation:
 Flip its real part: invert rotation
 Flip its imaginary part (conjugate): same
 Flip everything: same rotation

Every rotation is encoded
by two different quaternions.

56

57

3D Video Games
03: Rotations in 3D games - Part II

2020-03-30

Marco Tarini
Università degli studi di Milano 9

Interpolating two quaternions
representing rotations

Good results, but two caveats:
 Take the “shortest path” (as usual):

flip 2nd quaternion first, if this makes them closer
 Distance defined as dot product in 4D

(they are 4D unit vectors!)

 Loss of normality
 Needs re-normalization (NLERP),
 Or SLERP

(again, consider them 4D unit vectors)

Quaternions: exercises

 Which quaternion encodes a turnabout?
 (ita: «un dietrofront»: turning 180° around the up vector?)

 Apply that quaternion to rotate a point in (x,y,z)
 Use plain quaternion algebra, and algebraic notation

 Which quaternion encodes the identity rotation?
 Is it the only one? If not, which other does?
 Verify by applying it (or them)

 Which quaternion encodes a turn of 90° to the left?
 Uses your previous two answers to find the quat.

encoding turn 45° to the left, by using interpolation
 Do you need SLERP in this case? Is NLERP enough? Why?
 Verify the solution is correct using the axis-angle formula

58

59

3D Video Games
03: Rotations in 3D games - Part II

2020-03-30

Marco Tarini
Università degli studi di Milano 10

Quaternions as rotations

 Almost as compact as possible to store (4 scalars)
 Trivial to invert
 Fast to composite
 Fast to apply
 Easy to ensure they are still rotations (just normalize)
 Even after long sequences of cumulations, unlike matrices

 Behaves well under interpolation
 Even with just NLERP – better with SLERP

 The favourite representation in 3D games
 but, other solutions still useful in one context or another

Recap: representing rotations
1/2
1/2

3x3 Matrix Euler Angles

Space efficient?
(in RAM, GPU, storage…)

Apply
(to points/vectors)

Invert
(produce inverse)

Composite
(with another rotation)

Interpolate
(with another rotation)

Intuitive?
(e.g. to manually set)

Notes… Free extra
skew + scale!

easy to do…
bad result

trigonometry
sin/cos

?!?

9 products
(3 dot products)

super easy
transpose, 3 swaps

9 scalars 3 scalars
(even small int!)

roll &
yaw &
pitch

matrix
multiplication
(9 dots)

GIMBAL
LOCK

E
 f

 f
ic

 i
e

 n
 t

 /
 e

 a
 s

 y

t

o

60

62

3D Video Games
03: Rotations in 3D games - Part II

2020-03-30

Marco Tarini
Università degli studi di Milano 11

Recap: representing rotations
2/2 axis + angle (unitary) quaternion

Space efficient?
(in RAM, GPU, storage…)

Apply
(to points/vectors)

Invert
(produce inverse)

Cumulate
(with another rotation)

Interpolate
(with another rotation)

Intuitive?
(e.g. to manually set)

Notes… two representations for each rotation
(flip all no effect) (for different reasons)

sometimes

to matrix?
+ trigonometry

4 scalars (or 3)
(but precision needed)

E
 f

 f
ic

 i
e

 n
 t

 /
 e

 a
 s

 y

t

o

easy + best result

not really

super easy
flip imaginary or real part

super easy:
1 quat product

easy
2 quat product

super easy
flip axis or angle

easy + good result
(except angular speed)

4 scalars
(but precision needed)

And the winner is…

 Obviously, the quaternions
 because they are more efficient with each operation

 Obviously, the Euler angles
 because they are the most intuitive (and compact)

 Obviously, angle-and-axis
 because they have the best MIX (easy + most natural results)

 Obviously, the 3x3 matrices
 because they can also express (non uinf) scaling, and skewing
 because its three columns are the X, Y, Z axes

of the local space (useful)

63

66

3D Video Games
03: Rotations in 3D games - Part II

2020-03-30

Marco Tarini
Università degli studi di Milano 12

Switching between representations

3×3
MATRIX

EULER
ANGLES

QUATERNION
rather trivial
(I expect you
to be able to!)

interesting
exercise
(try it, maybe)

AXIS
&

ANGLE

What defines a rotation, for you?

« Roll, pitch, and yaw! »
then you are… a pilot, or an astronaut

« X-angle, Y-angle, and Z-angle! »
then you are… a digital artist (an animator or a scener)

« An angle! »
then you are… a flatland citizen

« A vector! the dir is the axis the magnitude the angle »
then you are… a physicist

« A 3x3 matrix! the submatrix of a 4x4 transform »
then you are… a computer graphicist, or a Graphics API

« A quaternion! »
then you are… a game developer

67

68

3D Video Games
03: Rotations in 3D games - Part II

2020-03-30

Marco Tarini
Università degli studi di Milano 13

GUI: how to author
rotations in 3D?

 Typical way: rotation gizmo
 (also: «arcball» or «trackball»)
 3 handles to control the three Euler angles
 or “free”, drag-n-drop mode (trackball metaphor)

convention: Red = X Green = Y Blue = Z

GUI: how to author
translations in 3D?

 translation gizmo
 handles to traslate along axes or planes

convention: Red = X Green = Y Blue = Z

69

70

3D Video Games
03: Rotations in 3D games - Part II

2020-03-30

Marco Tarini
Università degli studi di Milano 14

GUI: how to author
scalings in 3D?

 scale gizmo
 3 handles for anisotropic scalings

1 handle (middle) for uniform scalings

convention: Red = X Green = Y Blue = Z

Rotations in Unity
(class Quaternion)

 In the GUI :
 See / set as Euler Angles (intuitive) (degrees)

 Internally:
 Quaternions

 In the C# scripts:
 programmer choice:

quaternion, euler, axis+angle, matrices
thanks to C# «properties»
(setter/getter methods in disguise)

 gives the illusion to be whichever kind
you think they are

71

72

3D Video Games
03: Rotations in 3D games - Part II

2020-03-30

Marco Tarini
Università degli studi di Milano 15

Rotations in Unreal

Class FQuat :
 convert from:
 axis+angle, matrix4x4, FRotator, euler (vec3) (by constructors)
 Euler angles (makeFromEuler method)
 From-to vector pairs (FindBetween method)

 convert to:
 ToAxisAndAngle, Euler, Rotator,
 matrix columns GetAxis(X|Y|Z)
 also, with names: Get(Forward|Right|Up)Vector,

 methods: invert with Inverse,
blend with FastSlerp
or FastSlerpFullPath (no shortest path)
apply with RotateVector / UnrotateVector
composite with operator *

Class FRotator
for “nautical” Euler angles:
fields: Pitch Roll Yaw

fields: W X Y Z

Rotations in OpenGL

 In the «old school» API:
(and now in many similar libraries)
 API: glRotate3f
 takes: angle+axis

 Internally:
 matrices
 jointly as any other spatial transform
 separated in MODEL+VIEW+PROJECT transform

73

74

