
3D Video Games
04: the Scene Graph

2020-04-02

Marco Tarini
Università degli studi di Milano 1

Representations for
rotations

 3×3 Matrices
 Euler Angles
Angle + Axis
Quaternions

+ Traslation
(displacement vect.)

 4×4 Matrices (or 3×4)
Dual Quaternions

roto-translations

Representations for
roto-rotations (notes)

 So far, we assumed that the rotation and
translation component of a transformations
are stored separatedly
 We have seen reasons why this is convenient

 There are a few representations which store
rotation and translation (roto-translations, aka
“rigid” transformations) jointly:
 4x4 matrices (we have seen the problem with them)
 Dual quaternsions

2

3

3D Video Games
04: the Scene Graph

2020-04-02

Marco Tarini
Università degli studi di Milano 2

Dual Quaternions:
their math in a nutshell

 New “fantasy” assumption: there is a ε such that
ε ≠ 0 , ε2 = 0 (for the rest, ε behaves like any real)

 A dual quaternion: p + ε q , with p,q ∈ ℍ
 That is, eight scalars
 weights for: i , j , k , 1, εi , εj , εk , ε

 A dual quaternion represents:
 a point / vector in 3D , when p = 0 and Real(q) = 0
 a roto-translation, when ‖p‖ =1 and p·q = 0

 To roto-translate a point a, with roto-trans b
just conjugate their representations a ← b · a · b

Quaternion set

dual-quat
conjugate

Course Plan

lec. 1: Introduction
lec. 2: Mathematics for 3D Games

lec. 3: Scene Graph
lec. 4: Game 3D Physics +
lec. 5: Game Particle Systems
lec. 6: Game 3D Models
lec. 7: Game Textures
lec. 8: Game 3D Animations
lec. 9: Game 3D Audio
lec. 10: Networking for 3D Games
lec. 11: Artificial Intelligence for 3D Games
lec. 12: Game 3D Rendering Techniques

4

5

3D Video Games
04: the Scene Graph

2020-04-02

Marco Tarini
Università degli studi di Milano 3

3D video games 2018/2019

the Scene Graph

Marco Tarini

Recap:
3D Spatial Trasforms

 Math functions
 input: point / vector / versor
 output: point / vector / versor

 Typically:
 Scaling + rotation + translation

 They capture:
 Size / scaling up or down

 With deformations (anisotropic) or not (isotropic , uniform)

 Orientation in space / rotation
 Position / movement (translation)

Thus, can be applied to e.g. 3D
models (apply it to every vertex
position and normal…)

6

7

3D Video Games
04: the Scene Graph

2020-04-02

Marco Tarini
Università degli studi di Milano 4

Recap: transformation associated to
an object in the scene

 From:
 local space a.k.a.
 object space a.k.a.
 pre-transform space
 a.k.a. «castle» space /

«hero» space /
«camera» space /
«chainsaw» space /
«bazooka» space / etc

 Any object associated to a spatial location in the
game is given its transformation, which goes

 To:
 global space a.k.a.
 world space a.k.a.
 post-transform space

TA

Transforms associated
to each object in game

world

TB
TC

TD

9

10

3D Video Games
04: the Scene Graph

2020-04-02

Marco Tarini
Università degli studi di Milano 5

TA

Moving Object:
updating per-object Transforms

world

TB
TC

TD

Tnew·TD

TA

Moving Object:
updating per-object Transforms

world

TB
TC

TD

TD · Tnew

11

12

3D Video Games
04: the Scene Graph

2020-04-02

Marco Tarini
Università degli studi di Milano 6

Moving Object: two ways of
updating per-object Transforms

 Let Tnew be a new transformation to be applied
to move object D (w.r.t. its current placement)
 Say: rotation = ide scaling = 1 translation = (-2,0,0)
 Tnew = “move two units to the left” (assuming X = right)

 How to update transformation TD ? Two ways:
 TD ← TD · Tnew = object D moves 2 units on its left
 TD ← Tnew · TD = object D moves 2 units on world’s left

(meaning, i.e., “Westward”)

Info: Unity calls this applying the new transformation in local space or in global space respectively
both in interface, and in scripts (see parameter relativeTo of Transform.Translate)

Moving Object: two ways of
updating per-object Transforms

 Let Tnew be a new transformation to be applied
to change object D (w.r.t. its current placement)
 Say: rotation = ide scaling = 2 translation = (0,0,0)
 Tnew = “double by x2” (volume gets x8 bigger)

 How to update transformation TD ? Two ways:
 TD ← TD · Tnew = object D enlarges from its center
 TD ← Tnew · TD = object D enlarges from world’s center

(i.e. moves away from it too)

13

14

3D Video Games
04: the Scene Graph

2020-04-02

Marco Tarini
Università degli studi di Milano 7

Moving Object: two ways of
updating per-object Transforms

 Let Tnew be a new transformation to be applied
to change object D (w.r.t. its current placement)
 Say: rotation = j scaling = 1 translation = (0,0,0)
 Tnew = “flip by 180° around Up axis” (assuming Y = up)

 How to update transformation TD ? Two ways:
 TD ← TD · Tnew = object D rotates around its up axis

(e.g. going supine to prone if
laying down)

 TD ← Tnew · TD = object D rotates in world’s up axis

Composite scenes:
hierarchical transformations

 So far, we assumed that the transform of each
object goes from local to global in one step

 In reality, the scene is defined hierarchically
 Objects have sub-objects in them
 a city is made of houses made of walls made of bricks
 a «hat» sits on an «head» which sits on a «character»

which sits in a «spaceship» moving across the «scene»

 Also: different instances of the same object can
appear in multiple locations of the scene
 E.g. all wheels of all cars are the same “wheel” model

15

16

3D Video Games
04: the Scene Graph

2020-04-02

Marco Tarini
Università degli studi di Milano 8

Compositing scenes

world space

«wheel 1» space

«car» space

Scene graph

A tree (i.e. hierarchical structrure)
 Each nodes: a space (a reference frame)

 The Local Space of that node
 To each node we associate:

 Instances to… stuff:
anything at all that has a place in the virtual scene:

 3D models, lights, cameras, virtual microphones
spawn points, explosions, etc

 Root node: world space
 Global Space = local space of the root

 On the arches: we associate the transform
 the “local” trasform

18

19

3D Video Games
04: the Scene Graph

2020-04-02

Marco Tarini
Università degli studi di Milano 9

Scene graph

T0
T1

T2

T3
T4 T5 T6

Positioning
of the red car

(w.r.t. the world)

Positioning
of the 1st

wheel (w.r.t
the red car)

In this scene:
- 3 istances of the same

3D model of a vehicle
- 3x4 istances of a same

3D model of a wheel

Local VS global Transform

 Local transform (a.k.a. «relative» transform)
 from the local space of a node

to the local space of its parent space

 Global transform (a.k.a. «absolute» transform)
 from the local space of a node

to the world space (the “local” space of the root)
 obtained by: cumulating local transforms to the root!

 benefit: changing the transform associate to a
node affects its entire subtree!

20

21

3D Video Games
04: the Scene Graph

2020-04-02

Marco Tarini
Università degli studi di Milano 10

World
Space

Scene graph

Space of
Car 1

space of
wheel 1

space of
wheel 2

space of
wheel 3

space of
wheel 4

T0
T1

T2

T3
T4 T5 T6

Space of
Car 3

Space of
Car 2

Local VS Global Transforms

world

B

E F
G

TB TC

TD

TE

TF
TG

TH

DC

H

L

TL

TB ∘ TE ∘ TL
global

transform
of L

local
transform
of H

local
transform
of D

22

23

3D Video Games
04: the Scene Graph

2020-04-02

Marco Tarini
Università degli studi di Milano 11

Reminder: inverse of a composite
transform (or, in general, function)

world

space
B

space
A

TA

TB ∘ TA
TB

(TB ∘ TA)⁻¹
=

TA⁻¹ ∘ TB⁻¹TA⁻¹

TB⁻¹

global
transform

of A

Inverse of
global
transform of A

: store

: compute as needed

Reminder: inverse of a composite
transform (or, in general, function)

 The inverse of “first Ta then Tb” is
“the inverse of Tb” followed by “the inverse of Ta”

 As it’s natural: if you…
 “take a step forward,

then turn by 90° on the left”

…then, to go back to the starting pos you need to…
 “turn by 90° on the right,

then take a step backward”

(TB TA)⁻¹ = TA⁻¹ TB⁻¹

24

25

3D Video Games
04: the Scene Graph

2020-04-02

Marco Tarini
Università degli studi di Milano 12

The camera in the scene graph

 Camera:
 Like any other object in the scene, the camera sits in a node the

scene-graph
 for the scene to be rendered, there must be a camera

somewhere in the graph!
 View Space = Local Space of the camera
 (Screen Space is a similar, and sometimes equivalent, concept)

 the View Space is crucial for the rendering engine
 In view space, coordinates describe where things are in front of

the camera!
 For example: z > 0 ⇒ in front of the camera,

z<0 ⇒ behind the camera (don’t render)
 Camera animations = move camera

 by anything that changes its global transformation
 e.g. a script changing its local transform, or the one of it’s parent

The camera is in the scene graph

T0
T1

T2

T3 T4 T5 T6

camera

T8

E.g.: to make the camera follow the car…

Player’s
car

How the
camera is

placed
w.r.t the car

26

27

3D Video Games
04: the Scene Graph

2020-04-02

Marco Tarini
Università degli studi di Milano 13

Transforms for the Graphics engine
(link to Computer Graphics courses)

 The rendering engine uses a few standard
transformations, when rendering an object,

 They are named:
 “Model” matrix: from object space to world space

 Captures how the scene is modelled (by a scener)

 “View” matrix: from world space to view space
 Captures how the scene is viewed (by the camera)

 “Model-View” matrix: from object space to view space
 (“matrix” because trasnforms are usually modelled as

4x4 matrices by Rendering engines & APIs)

 Computing them from the scene graph is easy

Transforms for the Graphics engine

T0
T1

T2

T3 T4 T5 T6

camera

T8

Player’s
car

“Modelling”
transform:

T3 ∘ T0

“View”
transform:
(T2 ∘ T8)⁻¹

=
T8⁻¹ ∘ T2⁻¹

28

29

3D Video Games
04: the Scene Graph

2020-04-02

Marco Tarini
Università degli studi di Milano 14

Transforms for the Graphics engine

T0
T1

T2

T3
T4 T5 T6

camera

T8

Player’s
car

“Model-View” transform: T8⁻¹ ∘ T2⁻¹ ∘ T0 ∘ T3

Authoring a 3D scene in a game

 E.g. as a part of the Level Design
 Two different parts, by different artists:
 3D modellers make «scene props»

 the 3D models to be assembled

 (including their texutres etc)

 sceners compose the scene
 they assemble the props into a Scene Graph

artists

= asset

30

31

3D Video Games
04: the Scene Graph

2020-04-02

Marco Tarini
Università degli studi di Milano 15

Authoring a 3D scene

 Examples of other assets associated to a scene
 a Collision Mesh (a Geometry Proxy)

 one for each “solid” scene-prop
 can this be made automatic? Possible, not easy
 assigned to nodes (for dynamic objects),

or (for static objects) possibly all merged into one
 needed for: physics, visibility computation, AI,

plus all sorts of gameplay reasons…

 a Navigation Mesh (aka AI mesh)
 usually, one for the entire scene (stored in the root node)
 needed by: AI (routing – see later)
 can this be made automatic? Possible, not tribial

Authoring a 3D scene

 Examples of other assets associated to a scene:

 Scripts
 by the level designer

 Sky box

 Outer terrain mesh…

 Ambient sounds

 Other data such as spawn points, and more

32

33

3D Video Games
04: the Scene Graph

2020-04-02

Marco Tarini
Università degli studi di Milano 16

Scene Graph as a data structure

 Each engine / library adopts its own solution
 No standards

 but file formats exists which can include a scene graph:
e.g. COLLADA

Typical concepts:
 each Node class stores

 the local transform
 link to parent
 maybe, and/or to children, sibilings…)
 links to instances / assets

 global transforms / inverse are computed on demand
 some mechanism is used for repeated sub-trees

Example: a dining table

34

35

3D Video Games
04: the Scene Graph

2020-04-02

Marco Tarini
Università degli studi di Milano 17

World
(scene)

Pair
of Plates

GlassKnife Fork …

Chair
Dining

set

Table
furniture

Set
Table

Dining
room

Seat Seat …

Set
Table

Light
array L 6 walls

Light
array R

L0 L1 L2 …

Example: a dining table

36

37

3D Video Games
04: the Scene Graph

2020-04-02

Marco Tarini
Università degli studi di Milano 18

Nodes of a scene-graph in unity
GameObjects & Transforms

A node = a GameObject with
 a transform field, containing

 its local transform
 links to Parent, Children (and siblings) – which are transforms

 any number of associated “components”,
which represent anything residing in that node, like
 Meshes (to display at this nodes)
 Cameras: active one(s) produces the rendering(s)
 “RigidBodies”: objects controlled by the physics
 “Colliders”: geom proxies used for collisions
 “Particle systems” : (i.e. the “emitters” of particles)
 Sound producers / receivers
 Scripts …
 basically any asset!

Nodes of a scene-graph in unity
GameObjects & Transforms

 The Transformation actually stores the local transf:
 localPosition, localRotation, localScale
 goes from a node to its parent

 the Global transformation can be accessed
via the properties:
 position, rotation, scale

(“global” is left implicit)
 what does getting / setting them really do?

exercise!
 this it doesn’t always work for “scale”! why?

(A: it’s because anisotropy)

feels like
assigning / reading a field,
actually means invoking
setters/getters (C# trick)

38

40

3D Video Games
04: the Scene Graph

2020-04-02

Marco Tarini
Università degli studi di Milano 19

Digression on Unity :
properties and components

 Properties (C# mechanism)
it feels like a field (you can read or assign it)
but it’s actually a getter and setter method
 obj.xx = 3 …means… obj.set_xx(3)

 foo = obj.xx …means… foo = obj.get_xx()

 Components (Unity library mechanism)
 A generic something attached to a GameObject
 GameObject g;
g.getComponent< type >()
returns component of required type
(if it exists)

base class
for everything

Nodes of a scene-graph in Unreal
USceneComponent

A node within a graph with:
 link to parent / children:
 getParentComponents
 getChildComponent(index)

 associated stuff to it:
UPrimitiveComponent (subclass)
 for models, physical bodies, etc

 Local Transform: (fields)
 RelativeLocation , RelativeRotation, RelativeScale

 Global Transform: (methods)
 GetComponentTransform() /* return transformation */

41

42

3D Video Games
04: the Scene Graph

2020-04-02

Marco Tarini
Università degli studi di Milano 20

Mechanisms for
shared subtrees

 In Unity: see “Prefabs”
 In Unreal: see “BluePrints”

Drawing for the exercises

world

B

E
F

G

T0 T1
T2

T3

T4

T5

T6

DC

H

L

T7

43

44

3D Video Games
04: the Scene Graph

2020-04-02

Marco Tarini
Università degli studi di Milano 21

Exercises 1/2

What is the new transform T’7 which should subtitute T7 if…
 …node L il reattached as a child of D, leaving its position in

world space unaffected (e.g. by a scener, or a script)
 …node D is attached under node L, without affecting its world

space position.
 …the object in node L must be moved 1 unit on the right in

view space (camera is in node C)
 …the object in node L must be moved by 1 unit ON ITS RIGHT

…the object in node L must be displaced by a new transform T
applied in post-transform space.

Note: these kinds of problems are silently solved by Unity all the
times (in the scripts & when user manipulates the the GUI)

Exercises 2/2
 Report the global transform of node L
 I place a camera in node H:

report the View Transform for this scene
 What does it mean to apply a translation (0,2,0) to L …

1. in L Space (the local space of L)?
2. in World space?
3. in View Space?

 Say T7 is the identity, and the camera is in H:
how to modify T7 to get the case 1,2 or 3?

 Find the origin of space E in space H, and viceversa
 A microfone is in (the origin of) node E, and a speaker is in (the

origin of) node H. Find the distance from the mic to the speaker

46

47

