
3D Video Games                                
04: the Scene Graph

2020-04-02

Marco Tarini                                  
Università degli studi di Milano     1

Representations for 
rotations

 3×3 Matrices
 Euler Angles
Angle + Axis
Quaternions

+ Traslation
(displacement vect.)

 4×4 Matrices (or 3×4)
Dual Quaternions

roto-translations

Representations for 
roto-rotations (notes)

 So far, we assumed that the rotation and 
translation component of a transformations
are stored separatedly
 We have seen reasons why this is convenient

 There are a few representations which store 
rotation and translation (roto-translations, aka 
“rigid” transformations) jointly:
 4x4 matrices (we have seen the problem with them)
 Dual quaternsions

2

3



3D Video Games                                
04: the Scene Graph

2020-04-02

Marco Tarini                                  
Università degli studi di Milano     2

Dual Quaternions:
their math in a nutshell

 New “fantasy” assumption: there is a ε such that
ε ≠ 0 ,  ε2 = 0  (for the rest, ε behaves like any real)

 A dual quaternion:   p + ε q ,  with p,q ∈ ℍ
 That is, eight scalars 
 weights for:  i , j , k , 1, εi , εj , εk , ε

 A dual quaternion represents:
 a point / vector in 3D , when p = 0 and Real(q) = 0 
 a roto-translation, when  ‖p‖ =1 and p·q = 0 

 To roto-translate a point a, with roto-trans b
just conjugate their representations a ← b · a · b

Quaternion set

dual-quat
conjugate

Course Plan 

lec.  1: Introduction  
lec.  2: Mathematics for 3D Games 

lec.  3: Scene Graph 
lec.  4: Game 3D Physics  + 
lec.  5: Game Particle Systems 
lec.  6: Game 3D Models 
lec.  7: Game Textures 
lec.  8: Game 3D Animations 
lec.  9: Game 3D Audio 
lec. 10: Networking for 3D Games
lec. 11: Artificial Intelligence for 3D Games 
lec. 12: Game 3D Rendering Techniques

4

5



3D Video Games                                
04: the Scene Graph

2020-04-02

Marco Tarini                                  
Università degli studi di Milano     3

3D video games 2018/2019

the Scene Graph

Marco Tarini

Recap: 
3D Spatial Trasforms

 Math functions
 input: point / vector / versor
 output: point / vector / versor

 Typically: 
 Scaling + rotation + translation

 They capture: 
 Size / scaling up or down

 With deformations (anisotropic) or not (isotropic , uniform)

 Orientation in space / rotation
 Position / movement (translation)

Thus, can be applied to e.g. 3D 
models (apply it to every vertex 
position and normal…)

6

7



3D Video Games                                
04: the Scene Graph

2020-04-02

Marco Tarini                                  
Università degli studi di Milano     4

Recap: transformation associated to 
an object in the scene

 From:
 local space a.k.a.
 object space a.k.a.
 pre-transform space
 a.k.a. «castle» space / 

«hero» space / 
«camera» space / 
«chainsaw» space / 
«bazooka» space / etc

 Any object associated to a spatial location in the 
game is given its transformation, which goes

 To:
 global space a.k.a.
 world space a.k.a.
 post-transform space

TA

Transforms associated
to each object in game

world

TB
TC

TD

9

10



3D Video Games                                
04: the Scene Graph

2020-04-02

Marco Tarini                                  
Università degli studi di Milano     5

TA

Moving Object: 
updating per-object Transforms

world

TB
TC

TD

Tnew·TD

TA

Moving Object: 
updating per-object Transforms

world

TB
TC

TD

TD · Tnew

11

12



3D Video Games                                
04: the Scene Graph

2020-04-02

Marco Tarini                                  
Università degli studi di Milano     6

Moving Object: two ways of
updating per-object Transforms

 Let Tnew be a new transformation to be applied
to move object D (w.r.t. its current placement)
 Say:   rotation = ide   scaling = 1    translation = (-2,0,0)
 Tnew = “move two units to the left” (assuming X = right)

 How to update transformation TD   ? Two ways:
 TD  ← TD · Tnew = object D moves 2 units on its left
 TD  ← Tnew · TD          = object D moves 2 units on world’s left 

(meaning, i.e., “Westward”)

Info: Unity calls this applying the new transformation in local space or in global space respectively
both in interface, and in scripts (see parameter relativeTo of Transform.Translate)

Moving Object: two ways of
updating per-object Transforms

 Let Tnew be a new transformation to be applied
to change object D (w.r.t. its current placement)
 Say:   rotation = ide   scaling = 2    translation = (0,0,0)
 Tnew = “double by x2” (volume gets x8 bigger)

 How to update transformation TD   ? Two ways:
 TD  ← TD · Tnew = object D enlarges from its center
 TD  ← Tnew · TD          = object D enlarges from world’s center  

(i.e. moves away from it too)

13

14



3D Video Games                                
04: the Scene Graph

2020-04-02

Marco Tarini                                  
Università degli studi di Milano     7

Moving Object: two ways of
updating per-object Transforms

 Let Tnew be a new transformation to be applied
to change object D (w.r.t. its current placement)
 Say:   rotation = j scaling = 1    translation = (0,0,0)  
 Tnew = “flip by 180° around Up axis” (assuming Y =  up)

 How to update transformation TD   ? Two ways:
 TD  ← TD · Tnew = object D rotates around its up axis

(e.g. going supine to prone if 
laying down)

 TD  ← Tnew · TD          = object D rotates in world’s up axis  

Composite scenes:
hierarchical transformations

 So far, we assumed that the transform of each 
object goes from local to global in one step

 In reality, the scene is defined hierarchically
 Objects have sub-objects in them
 a city is made of houses made of walls made of bricks 
 a «hat» sits on an «head» which sits on a «character» 

which sits in a «spaceship» moving across the «scene»

 Also: different instances of the same object can 
appear in multiple locations of the scene
 E.g. all wheels of all cars are the same “wheel” model

15

16



3D Video Games                                
04: the Scene Graph

2020-04-02

Marco Tarini                                  
Università degli studi di Milano     8

Compositing scenes

world space

«wheel 1» space

«car» space

Scene graph

A tree (i.e. hierarchical structrure)
 Each nodes: a space (a reference frame)

 The Local Space of that node
 To each node we associate:

 Instances to… stuff: 
anything at all that has a place in the virtual scene:

 3D models, lights, cameras, virtual microphones
spawn points, explosions, etc

 Root node: world space
 Global Space = local space of the root

 On the arches: we associate the transform
 the “local” trasform

18

19



3D Video Games                                
04: the Scene Graph

2020-04-02

Marco Tarini                                  
Università degli studi di Milano     9

Scene graph

T0
T1

T2

T3
T4 T5 T6

Positioning
of the red car

(w.r.t. the world)

Positioning
of the 1st 

wheel (w.r.t 
the red car)

In this scene:
- 3 istances of the same

3D model of a vehicle 
- 3x4 istances of a same

3D model of a wheel

Local VS global Transform

 Local transform (a.k.a. «relative» transform)
 from the local space of a node 

to the local space of its parent space

 Global transform (a.k.a. «absolute» transform)
 from the local space of a node

to the world space (the “local” space of the root)
 obtained by: cumulating local transforms to the root!

 benefit: changing the transform associate to a 
node affects its entire subtree!

20

21



3D Video Games                                
04: the Scene Graph

2020-04-02

Marco Tarini                                  
Università degli studi di Milano     10

World
Space

Scene graph

Space of
Car 1

space of 
wheel 1

space of 
wheel 2

space of 
wheel 3

space of 
wheel 4

T0
T1

T2

T3
T4 T5 T6

Space of
Car 3

Space of
Car 2

Local VS Global Transforms

world

B

E F
G

TB TC

TD

TE

TF
TG

TH

DC

H

L

TL

TB ∘ TE ∘ TL
global 

transform
of L

local 
transform 
of H

local 
transform 
of D

22

23



3D Video Games                                
04: the Scene Graph

2020-04-02

Marco Tarini                                  
Università degli studi di Milano     11

Reminder: inverse of a composite 
transform (or, in general, function)

world

space
B

space
A

TA

TB ∘ TA
TB

(TB ∘ TA)⁻¹
=

TA⁻¹ ∘ TB⁻¹TA⁻¹

TB⁻¹

global 
transform

of A

Inverse of
global 
transform of A

: store

: compute as needed

Reminder: inverse of a composite 
transform (or, in general, function)

 The inverse of “first Ta then Tb” is 
“the inverse of Tb” followed by “the inverse of Ta”

 As it’s natural: if you… 
 “take a step forward, 

then turn by 90° on the left” 

…then, to go back to the starting pos you need to…
 “turn by 90° on the right,

then take a step backward”

(TB TA)⁻¹ = TA⁻¹ TB⁻¹

24

25



3D Video Games                                
04: the Scene Graph

2020-04-02

Marco Tarini                                  
Università degli studi di Milano     12

The camera in the scene graph

 Camera:
 Like any other object in the scene, the camera sits in a node  the 

scene-graph
 for the scene to be rendered, there must be a camera 

somewhere in the graph!
 View Space = Local Space of the camera
 (Screen Space is a similar, and sometimes equivalent, concept)

 the View Space is crucial for the rendering engine
 In view space, coordinates describe where things are in front of 

the camera!
 For example: z > 0 ⇒ in front of the camera, 

z<0 ⇒ behind the camera (don’t render)
 Camera animations = move camera 

 by anything that changes its global transformation
 e.g. a script changing its local transform, or the one of it’s parent

The camera is in the scene graph

T0
T1

T2

T3 T4 T5 T6

camera

T8

E.g.: to make the camera follow the car…

Player’s 
car

How the
camera is

placed
w.r.t the car

26

27



3D Video Games                                
04: the Scene Graph

2020-04-02

Marco Tarini                                  
Università degli studi di Milano     13

Transforms for the Graphics engine
(link to Computer Graphics courses)

 The rendering engine uses a few standard 
transformations, when rendering an object,

 They are named:
 “Model” matrix: from object space to world space

 Captures how the scene is modelled (by a scener)

 “View” matrix: from world space to view space
 Captures how the scene is viewed (by the camera)

 “Model-View” matrix: from object space to view space
 ( “matrix” because trasnforms are usually modelled as 

4x4 matrices by Rendering engines & APIs)

 Computing them from the scene graph is easy

Transforms for the Graphics engine

T0
T1

T2

T3 T4 T5 T6

camera

T8

Player’s 
car

“Modelling” 
transform:

T3 ∘ T0

“View” 
transform:
(T2 ∘ T8)⁻¹

=
T8⁻¹ ∘ T2⁻¹

28

29



3D Video Games                                
04: the Scene Graph

2020-04-02

Marco Tarini                                  
Università degli studi di Milano     14

Transforms for the Graphics engine

T0
T1

T2

T3
T4 T5 T6

camera

T8

Player’s 
car

“Model-View” transform:   T8⁻¹ ∘ T2⁻¹ ∘ T0 ∘ T3

Authoring a 3D scene in a game 

 E.g. as a part of the Level Design
 Two different parts, by different artists:  
 3D modellers make «scene props»

 the   3D models   to be assembled

 (including their  texutres etc)

 sceners compose the scene
 they assemble the props into a Scene Graph

artists

= asset

30

31



3D Video Games                                
04: the Scene Graph

2020-04-02

Marco Tarini                                  
Università degli studi di Milano     15

Authoring a 3D scene 

 Examples of other assets associated to a scene
 a  Collision Mesh  (a Geometry Proxy)

 one for each “solid” scene-prop
 can this be made automatic? Possible, not easy
 assigned to nodes (for dynamic objects), 

or (for static objects) possibly all merged into one
 needed for: physics, visibility computation, AI, 

plus all sorts of gameplay reasons…

 a  Navigation Mesh  (aka AI mesh)
 usually, one for the entire scene (stored in the root node)
 needed by: AI (routing – see later)
 can this be made automatic? Possible, not tribial

Authoring a 3D scene 

 Examples of other assets associated to a scene:

 Scripts  
 by the  level designer

 Sky box  

 Outer terrain mesh…

 Ambient   sounds

 Other data such as spawn points, and more

32

33



3D Video Games                                
04: the Scene Graph

2020-04-02

Marco Tarini                                  
Università degli studi di Milano     16

Scene Graph as a data structure

 Each engine / library adopts its own solution
 No standards

 but file formats exists which can include a scene graph: 
e.g. COLLADA

Typical concepts:
 each Node class stores

 the local transform
 link to parent 
 maybe, and/or to children, sibilings…)
 links to instances / assets

 global transforms / inverse are computed on demand
 some mechanism is used for repeated sub-trees

Example: a dining table

34

35



3D Video Games                                
04: the Scene Graph

2020-04-02

Marco Tarini                                  
Università degli studi di Milano     17

World
(scene)

Pair
of Plates

GlassKnife Fork …

Chair
Dining

set

Table
furniture

Set 
Table

Dining
room

Seat Seat …

Set
Table

Light 
array L 6 walls

Light
array R

L0 L1 L2 …

Example: a dining table

36

37



3D Video Games                                
04: the Scene Graph

2020-04-02

Marco Tarini                                  
Università degli studi di Milano     18

Nodes of a scene-graph in  unity 
GameObjects & Transforms

A node = a GameObject with
 a transform field, containing 

 its local transform
 links to Parent, Children (and siblings) – which are transforms

 any number of associated “components”,
which represent anything residing in that node, like
 Meshes (to display at this nodes)
 Cameras: active one(s) produces the rendering(s)
 “RigidBodies”: objects controlled by the physics
 “Colliders”: geom proxies used for collisions
 “Particle systems” : (i.e. the “emitters” of particles)
 Sound producers / receivers
 Scripts …
 basically any asset!

Nodes of a scene-graph in  unity 
GameObjects & Transforms

 The Transformation actually stores the local transf:
 localPosition, localRotation, localScale
 goes from a node to its parent

 the Global transformation can be accessed
via the properties:
 position, rotation, scale

(“global” is left implicit)
 what does getting / setting them really do? 

exercise!
 this it doesn’t always work for “scale”! why? 

(A: it’s because anisotropy)

feels like 
assigning / reading a field, 
actually means invoking 
setters/getters (C# trick)

38

40



3D Video Games                                
04: the Scene Graph

2020-04-02

Marco Tarini                                  
Università degli studi di Milano     19

Digression on   Unity :  
properties and components

 Properties (C# mechanism)
it feels like a field (you can read or assign it)
but it’s actually a getter and setter method
 obj.xx = 3 …means… obj.set_xx( 3 )

 foo = obj.xx …means… foo = obj.get_xx()

 Components (Unity library mechanism)
 A generic something attached to a GameObject
 GameObject g;
g.getComponent< type >() 
returns component of required type 
(if it exists)

base class 
for everything

Nodes of a scene-graph in   Unreal
USceneComponent

A node within a graph with:
 link to parent / children:
 getParentComponents
 getChildComponent( index )

 associated stuff to it: 
UPrimitiveComponent (subclass)
 for models, physical bodies, etc

 Local Transform: (fields)
 RelativeLocation , RelativeRotation, RelativeScale

 Global Transform: (methods)
 GetComponentTransform() /* return transformation */

41

42



3D Video Games                                
04: the Scene Graph

2020-04-02

Marco Tarini                                  
Università degli studi di Milano     20

Mechanisms for
shared subtrees

 In Unity: see “Prefabs” 
 In Unreal: see “BluePrints”

Drawing for the exercises

world

B

E
F

G

T0 T1
T2

T3

T4

T5

T6

DC

H

L

T7

43

44



3D Video Games                                
04: the Scene Graph

2020-04-02

Marco Tarini                                  
Università degli studi di Milano     21

Exercises 1/2

What is the new transform  T’7 which should subtitute T7 if…
 …node L il reattached as a child of D, leaving its position in 

world space unaffected (e.g. by a scener, or a script)
 …node D is attached under node L, without affecting its world 

space position.
 …the object in node L must be moved 1 unit on the right in 

view space (camera is in node C)
 …the object in node L must be moved by 1 unit ON ITS RIGHT

…the object in node L must be displaced by a new transform T 
applied in post-transform space. 

Note: these kinds of problems are silently solved by Unity all the 
times (in the scripts & when user manipulates the the GUI)

Exercises 2/2
 Report the global transform of node L
 I place a camera in node H: 

report the View Transform for this scene
 What does it mean to apply a translation (0,2,0) to L …

1. in L Space (the local space of L)?
2. in World space?
3. in View Space?

 Say T7 is the identity, and the camera is in H:
how to modify T7 to get the case 1,2 or 3?

 Find the origin of space E in space H, and viceversa
 A microfone is in (the origin of) node E, and a speaker is in (the 

origin of) node H. Find the distance from the mic to the speaker

46

47


