

Marco Tarini Università degli studi di Milano

State of an object		
Point position	current	
Rotation orientation	current	updated
Vector velocity		physics
Vector angular_velocity	current ra	tes of change
Scalar mass		
Matrix moment_of_inertia		
Point barycenter	constants	setup at initialization,
Scalar drag 👞	constants	e.g. by scripts
frictions;		
See Net		Note: acceleration/forces/torques are not part of the state

Simple example: analytical solution Solving... $\vec{f}(t_c) = fin(p(t_c),...)$ $\vec{a}(t_c) = \vec{f}(t_c)/m$ $\vec{f}(t_c) = m \cdot \begin{pmatrix} 0 \\ -9.8 \end{pmatrix}$ $\vec{v}(t_c) = \vec{f}(t_c)/m = \begin{pmatrix} 0 \\ -9.8 \end{pmatrix}$ $\vec{v}(t_c) = \vec{f}(t_c)/m = \begin{pmatrix} 0 \\ -9.8 \end{pmatrix}$ $\vec{v}(t_c) = \begin{pmatrix} v_x \\ v_y \end{pmatrix} + \int_0^{t_c} \begin{pmatrix} 0 \\ -9.8 \end{pmatrix} \cdot dt = \begin{pmatrix} v_x \\ v_y - 9.8 \cdot t_c \end{pmatrix}$ $p(t_c) = p_0 + \int_0^{t_c} \vec{v}(t) \cdot dt = \begin{pmatrix} 0 \\ 0 \end{pmatrix} + \int_0^{t_c} \begin{pmatrix} v_x \\ v_y - 9.8 \cdot t_c \end{pmatrix}$ $dt = \begin{pmatrix} v_x \cdot t_c \\ v_y \cdot t_c - 9.8/2 \cdot t_c^2 \end{pmatrix}$ 45

Marco Tarini Università degli studi di Milano

