
3D Video Games
05: Game Physics - part1

2020-04-06

Marco Tarini
Università degli studi di Milano 1

3D video games

Game Physics
Marco Tarini

Course Plan

lec. 1: Introduction
lec. 2: Mathematics for 3D Games

lec. 3: Scene Graph
lec. 4: Game 3D Physics +
lec. 5: Game Particle Systems
lec. 6: Game 3D Models
lec. 7: Game Textures
lec. 8: Game 3D Animations
lec. 9: Game 3D Audio
lec. 10: Networking for 3D Games
lec. 11: Artificial Intelligence for 3D Games
lec. 12: Game 3D Rendering Techniques

2

3

3D Video Games
05: Game Physics - part1

2020-04-06

Marco Tarini
Università degli studi di Milano 2

Animation in games

 Assets!
 Fully controlled by

artist/designer
(dramatic effects!)

 Realism: depends on
artist’s skill

 Does not adapt to
context

 Repetition artefacts

 Physics engine
 Less control

 Physics-driven
realism

 Auto adaptation
to context

 Naturally repretition free

ProceduralNon procedural

but, a note on terminology:
in some contexts, procedural means
“produced by a simple procedure”
as opposed to “physically simulated”

Physics simulation in videogames

 3D, or 2D
 “soft” real-time
 efficiency
 1 frame = 33 msec (at 30 FpS)
 physics = 5% - 30% max of computation time

 plausibility
 (not necessarily accuracy)

 robustness
 (should almost never “explode”)

5

7

3D Video Games
05: Game Physics - part1

2020-04-06

Marco Tarini
Università degli studi di Milano 3

Physics in games:
cosmetics or gameplay?

 Just a graphic accessory?
(for realism!)
 e.g.:

 particle effects (w/o feedback)
 secondary animations
 Ragdolling

 Or a gameplay component?
 e.g. physics based puzzles
 Popular approach in 2D

(since always!)

Physics in games:
cosmetics or gameplay?

 Just a graphic accessory?
(for realism!)
 e.g.:

 particle effects (w/o feedback)
 secondary animations
 Ragdolling

 Or a gameplay component?
 e.g. physics based puzzles
 Popular approach in 2D

(since always!)

8

9

3D Video Games
05: Game Physics - part1

2020-04-06

Marco Tarini
Università degli studi di Milano 4

Physics in games:
cosmetics or gameplay?

 Just a graphic accessory?
(for realism!)
 e.g.:

 particle effects (w/o feedback)
 secondary animations
 Ragdolling

 Or a gameplay component?
 e.g. physics based puzzles
 Rising trend in 3D

Physics engine:
intro

 Game engine module
 executed in real time at game run-time

 A high-demanding computation
 on a very limited time budget!

 …but highly parallelizable
 potentially, highly parallel

==> good fit for hardware support
(just like the Rendering Engine)

10

11

3D Video Games
05: Game Physics - part1

2020-04-06

Marco Tarini
Università degli studi di Milano 5

Hardware for
Physics engine

 For a brief moment ~2006: PPU
 “Physics Processing Unit”
 HW unit specialized for physics

 Then: GP-GPU
 “General Purpose Graphics Processing Unit”

 Use of the graphics card for generic tasks
(not related with 3D computer graphics)

 Ex.: Cuda (nVidia)

To exploit a strong parallelism,
you need a strongly parallel hardware!

Main Software (libraries, SDK)

open source, free,
HW accelerated (OpenCL) + CPU

open source, free

mostly CPU
(Microsoft)

CPU+GPU
(CUDA) NVidia

2D, open source, free

12

13

3D Video Games
05: Game Physics - part1

2020-04-06

Marco Tarini
Università degli studi di Milano 6

Brief history

Lots of AAA
3D Games

by

VPhysics

etc
(in Maya
as a plugin,…) Lots more of AAA

3D Games

Brief history

…

14

15

3D Video Games
05: Game Physics - part1

2020-04-06

Marco Tarini
Università degli studi di Milano 7

The 2 tasks of the Physics engine

1. Dynamics (Newtonian)
for objects such as:
 Particles
 Rigid bodies
 Articulated bodies

 E.g. “ragdolling”

 Soft bodies
 Ropes (specific solutions)
 Cloth (specific solutions)
 Hair (specific solutions)
 Free-form deformation

bodies (general)

 Fluids
 Expensive!

2. Collision handling
 Collision detection
 Collision response

Fields of study

 Dynamics
 The motion, as a result of forces
 “Subject to gravity, how will this pendulum swing?”

 Statics
 Equilibrium states, energy minimization states
 “In which state(s) can this pendulum be still?”

 Kinematics
 The motion itself, irrespective of why it’s moving
 “If the angular speed of at the base of the pendulum is

currently X, how fast is the tip moving?” (or vice versa)

16

17

3D Video Games
05: Game Physics - part1

2020-04-06

Marco Tarini
Università degli studi di Milano 8

Newtonian
Dynamics

 The one with:
 Masses
 position and its derivative: velocity
 and momentum

 direction and angular velocity
 and angular momentum

 forces acceleration…

Reminder:
Spatial location of an object
2D Physics

 Position:
(x,y)

 Orientation:
(α) – angle (scalar)

3D Physics

 Position:
(x,y,z)

 Orientation:
quaternion or

axis,angle or

axis x angle or

3x3 matrix or

Euler angles

18

19

3D Video Games
05: Game Physics - part1

2020-04-06

Marco Tarini
Università degli studi di Milano 9

Newtonian dynamics: summary

Actual
object
location

Rate of change
of

(d / dt)

 “with mass”

(momentum)

What changes the
rate of change

(d2 / dt2)

 “with mass”

Position 𝑝

𝑝 = (x,y,z)

Velocity 𝑣

𝑣 = �̇�

(|𝑣| = “speed”)

Momentum

𝑣 𝑚

Acceleration

�⃗� = �̇� = �̈�

Force 𝑓

𝑓 = �⃗� 𝑚

Orientation

(e.g. quaternion)

Angular velocity 𝜔 Angular momentum

𝜔 𝐼

𝐼 = moment of inertia
(for axis)
(“rotational inertia”)

Angular acc. α Torque τ

τ = �⃗� 𝐼

(“mechanic
momentum”)

Change the state
(no memory)

state (is kept! inertia!)
(changes, but only continuously)

A few constants per object

A few quantities associated to each object
 constants: they don’t (usually) change
 input of the physical simulation, not output

 Mass:
 resistance to change of velocity

 Moment of Inertia:
 resistance to change of angular velocity

 Barycenter:
 the center of mass

28

29

3D Video Games
05: Game Physics - part1

2020-04-06

Marco Tarini
Università degli studi di Milano 10

Mass

 resistance to change of velocity
 inertial mass

 also, incidentally:
ability to attract every other object
 gravitational mass
 happens to be the same

 what you measure with a scale
 Unity of measure:

kg, g…

Moment of inertia

 Resistance to change of angular velocity

 (an object rotates around its barycenter)

high

low

30

31

3D Video Games
05: Game Physics - part1

2020-04-06

Marco Tarini
Università degli studi di Milano 11

Moment of inertia

 Scalar moment of inertia
 Resistance to change of angular velocity
 Depends on the mass, and on its distribution

 the farthest one sub-mass from the axis, the > the resistance
 In 3D: its different for each axis of rotation

 It can be computed for any axis, thanks to…
 Moment of inertia as a 3x3 Matrix
 a matrix A used to extract the scalar, for any given axis
 given an axis a (a = unit vector), the moment of inertia is

aT A a
 matrix A can be computed once and for all for a rigid object

 how: that’s beyond this course
 in practice: use given formulas for common shapes
 or sum the contributions for each sub-mass

Barycenter

 Aka the center of mass
 a position

 In the discrete setting:
simply the weighted average of the positions
of the subparts composing an object
 literally “weighted”: with their masses

 Does not necessarily coincide with
the origin of the local frame of that object
 but it can and often will

32

33

3D Video Games
05: Game Physics - part1

2020-04-06

Marco Tarini
Università degli studi di Milano 12

State of an object

current

current rates of change

constants

updated
by
physics

Point position

Rotation orientation

Vector velocity

Vector angular_velocity

Scalar mass

Matrix moment_of_inertia

Point barycenter

Scalar drag

…

setup at initialization,
(rarely) changed
e.g. by scripts

Note: acceleration/forces/torques are
not part of the state

frictions;
see later

In

part of Transform component

the RigidBody component

Point position

Rotation orientation

Vector velocity

Vector angular_velocity

Scalar mass

Matrix moment_of_inertia

Point barycenter

Scalar drag

…

Adding a “RigidBody” component
to a Game Object is to say:
“please let the Phys. engine take care
of this object”

bool isKinematic

34

35

3D Video Games
05: Game Physics - part1

2020-04-06

Marco Tarini
Università degli studi di Milano 13

In (using Unity terminology)

part of Transform component

the RigidBody component

Vector3 position

Quaternion rotation

Vector3 velocity

Vector3 angular_velocity

float mass

Vector3 centerOfMass

float drag

…

note: speed = velocity.magnitude

moment of inertia matrix

the Vector3 = a diagonal matrix D
by rotating it RTDR the final matrix

note: they are the components
of the global transformation!

the barycenter (in local space)

Vector3 inertiaTensor
Quaternion inertiaTensorRotation

per second
(not per frame)

bool isKinematic
it true: disable dynamics
(keeps e.g. collisions)

State of a point-particle

not used !

Point position

Rotation orientation

Vector velocity

Vector angular_velocity

Scalar mass

Matrix moment_of_inertia

Point barycenter

Scalar drag

…

One trend in game phys engines is to
simulate point-particles only.

Much simpler: no rotation needed!

We will see later how to still get rigid
bodies back.

For now, we focus on this simpler case.

36

37

3D Video Games
05: Game Physics - part1

2020-04-06

Marco Tarini
Università degli studi di Milano 14

Dynamics (Newtonian)

0

0

function(,...)

/

f p

a f m

v v a dt

p p v dt

describe the forces
given the particle positions (and more)

Dynamics (Newtonian)

dtvpp

dtavv

mfa

pfunf

0

0

/

,...)(forces

acceler.

velocity

positions

38

39

3D Video Games
05: Game Physics - part1

2020-04-06

Marco Tarini
Università degli studi di Milano 15

An (obvious) precisation

 = virtual time != real time
 e.g.:

 game paused t costant.
 Fast forward, replay,

rallenty, reverse change of speed/flow direction of t

occasionally,
gameplay exploit this difference in spectacular ways!

PoP – the sands of times serie (Ubisoft, 2003-…) Braid (Jonathan Blow, 2008)

Ct
Wall time

Computing physics evolution

 Analytical solutions:

state = function(t)

Given force functions (and acc), find
the functions (pos, vel,…) in the
specified relations:

 Numerical solutions:

1. state(t = 0) init
2. state(t + 1)

evolve(statet)

3. goto 2

C

C

t

C

t

C

CC

CC

dttvptp

dttavtv

mtfta

tpfunztf

0

0

0

0

)()(

)()(

/)()(

),...)(()(

40

41

3D Video Games
05: Game Physics - part1

2020-04-06

Marco Tarini
Università degli studi di Milano 16

Analytical solutions

0

0

0

0

() function((),...)

() () /

() ()

() ()

C

C

C C

C C

t

C

t

C

f t p t

a t f t m

v t v a t dt

p t p v t dt

pos, acc, vel, forces:
in function of
current time Ct

Analytical solutions

0

0

() function(()) / m

(0)

(0) p

p t p t

p v

p

with

that is, find position as function p of time s.t.

sometimes, of
other things too
(e.g. velocity).
Harder to solve!

42

43

3D Video Games
05: Game Physics - part1

2020-04-06

Marco Tarini
Università degli studi di Milano 17

Simple example:
analytical solution

y

x

v

v
v0

0

0
0p

8.9

0
mf

x

y
in this specific case,
acc is a constant
(does not depend on pos)

«ballistic shooting»
of a mass,
in 2D, ignoring friction...

Simple example:
analytical solution

Solving…

2

00

0

0

2/8.98.90

0
)()(

8.98.9

0
)(

8.9

0
/)()(

8.9

0
)(

CCy

Cx
t

y

x
t

C

Cy

x
t

y

x
C

CC

C

ttv

tv
dt

tv

v
dttvptp

tv

v
dt

v

v
tv

mtfta

mtf

CC

C

C

C

t

C

t

C

CC

CC

dttvptp

dttavtv

mtfta

tpfuntf

0

0

0

0

)()(

)()(

/)()(

),...)(()(

44

45

3D Video Games
05: Game Physics - part1

2020-04-06

Marco Tarini
Università degli studi di Milano 18

Simple example:
analytical solution

Final result:

22/8.9
)(

8.9
)(

8.9

0
)(

8.9

0
)(

CCy

Cx
C

Cy

x
C

C

C

ttv

tv
tp

tv

v
tv

ta

mtf

x

y

)(Ctp

Some numerical methods

 Numerical integrators:
 Forward Euler method
 (simple and direct)

 Leapfrog method
 Verlet method

 Strategies for modelling interactions (see later)
 Constraints (position based dynamics)
 Elastic forces

46

47

3D Video Games
05: Game Physics - part1

2020-04-06

Marco Tarini
Università degli studi di Milano 19

Numerical method features

 How efficient / expensive
 must be at least soft real-time

 (if from time to time computation delayed to next frame, ok)
 How accurate
 must be at least plausible

 (if stays plausible, differences from reality are acceptable)
 How robust
 rare completely wrong results

 (and never crash)
 How generic
 Which phenomena / constraints / object types is it able to

recreate?
 requirements depend on the context (ex: gameplay)

Euler integration

(1) Evaluate the force
(on each particle)
as a function of position
(even of other particles)

(2) acceleration
of each particle given by:
forces on it and its mass

(3) Update velocity with acceleration

(4) Update position with velocity

(state / variables) , (temp variables)

For each step:

dtvpp

dtavv

mfa

pfunf

0

0

/

,...)(

48

49

3D Video Games
05: Game Physics - part1

2020-04-06

Marco Tarini
Università degli studi di Milano 20

Euler methods

dtvpp

dtavv

mfa

pfunf

v

p

/

...),(

...

...init
state

one
step dttt

Simple example:
numerical solution

4

2
0

y

x

v

v
v

0

0
0p

1

0
mf

x

y
constant
(in this specific case not
dependent from pos)

Same phenomena
of previous example

𝑑𝑡 = 1 sec

here, for instance,

50

51

3D Video Games
05: Game Physics - part1

2020-04-06

Marco Tarini
Università degli studi di Milano 21

Simple example:
numerical solution

init

Step n 0 1 2 3 4 5 6 7 …

vel: (2,4) (2,3) (2,2) (2,1) (2,0) (2,-1) (2,-2) (2,-3) …

pos: (0,0) (2,3) (4,5) (6,6) (8,6) (10,5) (12,3) (14,0) …

x

y

0

1

2
3 4

5

6

7

step step step step step step step step

𝑓 = 𝑚 ⋅
0

−1

�⃗� = 𝑓/𝑚

�⃗� = �⃗� + �⃗� ⋅ 𝑑𝑡

𝑝 = 𝑝 + �⃗� ⋅ 𝑑𝑡

Physics evolution computation

 Analytical solutions: Numerical solutions:

x

y

0

1

2
3 4

5

6

7

x

y

)(C
y

x
tfunction

p

p

52

53

3D Video Games
05: Game Physics - part1

2020-04-06

Marco Tarini
Università degli studi di Milano 22

Physics evolution computation

 Analytical solutions:
 Super efficient!

 Close form solution

 Accurate
 Only simple systems
 formulas found

case by case
(often not existing!)

 NO
(but, for instance, useful to
allow the AI to make
predictions)

 Numerical solutions:
 Expensive (iterative)

 but interactive

 Integration errors
 Flexible
 Generic

 YES

Integration errors

 Depends on dt
 Small dt ==> more steps needed (for same virtual time)

==> more computationally expensive, but smaller error,
i.e. more accurate simulation
(smaller difference with exact analytical solution)

 dt = 1.0 sec / FPS of physics simulation
 (recall: not necessarily same rendering frame rate)

 How much does error decreasing when dt decreases?
 That’s the «Order» of the simulation
 Euler is 1st order: the error can be as large as O(dt1)

(but usually not that bad)

 Error keeps on accumulating with time
 (dependent also from 𝑡)

54

55

