
3D Video Games
05: Game Physics - part2

2020-04-16

Marco Tarini
Università degli studi di Milano 1

Course Plan

lec. 1: Introduction
lec. 2: Mathematics for 3D Games

lec. 3: Scene Graph
lec. 4: Game 3D Physics +
lec. 5: Game Particle Systems
lec. 6: Game 3D Models
lec. 7: Game Textures
lec. 8: Game 3D Animations
lec. 9: Game 3D Audio
lec. 10: Networking for 3D Games
lec. 11: Artificial Intelligence for 3D Games
lec. 12: Game 3D Rendering Techniques

Integration errors

 A numerical integrator only approximates
the real value of the integrals

 The discrepancy (simulation errors) accumulate
with virtual time
during all the simulation

 How much error is accumulated?
 It depends on dt !
 Small dt ⇒ more steps needed (for same virtual time)

⇒ more computationally expensive,
but smaller errors, i.e. more accurate simulation

56

57

3D Video Games
05: Game Physics - part2

2020-04-16

Marco Tarini
Università degli studi di Milano 2

Order of convergence

 How much does the total error decrease
as dt decreases?

 That’s called the Order of the simulation

 1st order: the total error can be as large as O(dt1)
 “if the number of physics steps doubles

(physical computation effort doubles)
dt becomes halves and errors can be expected to halve”

 The error introduced by each single step is O(dt2),

 Euler is 1st order
 This is not too good, we want better
 Note: The error is usually not that bad as linear with dt,

but they can be

The integration steps dt of
any numerical methods (summary)

dt : delta of virtual time from last step
 the “temporal resolution” of the simulation!

 if large: more efficiency
 fewer steps to simulate same amount of virtual time

 if small: more accuracy
 especially with strong forces and/or high velocities

 Common values: 1 sec / 60 … 1 sec / 30
 i.e. a step simulates around 16 … 32 msec. of virtual time
 note: it’s not necessarily the same refresh rate of rendering

(FPS of rendering ≠ FPS of physics. Rendering can be less!)
 note: di dt is not necessarily the same in all physics steps

(need more accuracy now? Decrease dt

number of physics
steps per sec, or
«physics FPS»

58

59

3D Video Games
05: Game Physics - part2

2020-04-16

Marco Tarini
Università degli studi di Milano 3

Forces

 In general, forces are a function of current positions
 Examples
 Gravity
 Wind, electrical, magnetic, Archimede’s buoyancy,

mechanical springs, shock waves (explosions), etc …
 Fake / “Magic” control forces

 added for controlling the evolution, not physically justified

 Frictions
 They also depend on speed
 But, they can be accounted for using damping – see later

 And more (resistance forces of solid objects?)

...

function(, ...)

...

f p

Forces: control forces

 Example: the player pressing the forward button
⇒ a forward force is applied to his/her avatar
 no physical justification
 “Don’t ask questions, physics engine”

 According to many:
it’s better when that’s not done much
 the more physically justified the forces, the better
 for example: does the car accelerate…

because a torque is appied to its two traction wheels VS
because a force is applied to its body

 usually much harder to cortrol
 see also: gameplay VS cosmetics, control VS realism,

emerging behaviours

60

61

3D Video Games
05: Game Physics - part2

2020-04-16

Marco Tarini
Università degli studi di Milano 4

Forces: Springs

 Simplified model for elastic forces
 One spring connects two

particles Va and Vb
 Characterized by:

1. Rest length L
2. Elastic constant K

 Force:
counteracts stretching
and compression

Va

Vb

The force f exerted by spring on Va is:
• direction: versor from Vb to Va
• magnitude: K (L – dist(Va,Vb))

The force f exerted on Vb is –f

Forces: Springs

 Simplified model for elastic forces
 One spring connects two

particles Va and Vb
 Characterized by:

1. Rest length κ

2. Elastic constant 𝑘

 Force:
counteracts stretching
and compression

Va

Vb

f = 𝑘 v − v − κ ⋅
v − v

v − v

f = - f

62

63

3D Video Games
05: Game Physics - part2

2020-04-16

Marco Tarini
Università degli studi di Milano 5

Mass and spring systems

 Useful for deformable objects
 for instance elasitic ropes (or hairs)

Extra springs,
to model resistance

to bending

Mass and spring systems

 For instance cloth

img by msqrt (pauli kemppinen)

64

65

3D Video Games
05: Game Physics - part2

2020-04-16

Marco Tarini
Università degli studi di Milano 6

Mass and Spring systems
can model…

 Elastic deformable objects
 Elastic = go back to original shape
 Easily modelled as compositions of (ideal) springs.

 Plastic deformable objects?
 Plastic = assume deformed pose permanently
 Dynamically change rest-length L in response to large

compression/stretching, in certain conditions (not easy)
 Rigid objects / inextensible ropes ?

 Increase spring stiffness? k → ∞
 Makes sense, physically, but…
 Large k ⇒ large f ⇒ instability ⇒ unfeasibly small dt needed
 Doesn’t work. How, then? see later

Continuity of pos and vel

 In real Newtonian physics the state
(pos and vel) can only change continuously
 No sudden jump!

 In practice, sometimes is useful to artificially
break continuity in the simulations

 Discontinuous changes:
 in positions: “teleports”
 in velocity: “impulses”
 (those are not necessary variations justified by forces)

66

67

3D Video Games
05: Game Physics - part2

2020-04-16

Marco Tarini
Università degli studi di Milano 7

Dynamics displacements
VS kinematic

aka dynamic
displacements

(justified by the
physics)

. . .
p = p + v ⋅ 𝑑𝑡
. . .

aka Kinematic
displacements

just
“teleportation”

. . .
p = p + 𝑑p
. . .

direct and discontinuous change of state (position)

Impulses VS Forces

 Forces (continuous)
 Continuous application
 every frame

...

/

...

dtmfvv

 Impulses
 Infinitesimal time
 una tantum

...

/

...

mivv

a discontinuous change of state (velocity)!

they model very intense but
short forces
(such as impacts)

68

69

3D Video Games
05: Game Physics - part2

2020-04-16

Marco Tarini
Università degli studi di Milano 8

Impulses VS Forces

 Force :
 it determines an acceleration
 acc determines a (continuous!) change of vel
 physically correct

 Impulse :
 a (discontinuous!) change of vel
 useful to control a simulation (direct change of velocity)
 a physical interpretation: a force with:

 application time approaching zero
 magnitude approaching infinity

 Useful to model phenomena with a time scale << dt
 ex: a tennis ball rebounding against a tennis racket

Impulses VS Forces

 what does truly happen when it bounces off the ground?

 very strong forces (but not infinite)
 applied for a very short time (but not instantaneous)
 see collision response later for details

about the impulse based approximations

0 msec 1 msec 2 msec 3 msec 4 msec

f⃗f⃗ f⃗

v v
v

v v

70

72

3D Video Games
05: Game Physics - part2

2020-04-16

Marco Tarini
Università degli studi di Milano 9

Impulses VS Forces

dt

no impact
force

no impact
force

huge
force

 This can only be modelled as an impulse, not a force
(and maybe a small teleport of the ball to move it outside the table)

 what does truly happen when it bounces off the ground?

Effect of integration errors
of System Energy
 Because integration errors:

simulated solutions ≠ “real” solutions
 In a real system, the total energy cannot increase.

 Usually, it decreases over time, due to dissipations
 That is, attrition turns dynamic energy into heat

 Therefore, a particularly nasty integration error is when
the total energy of the system increases over time
 e.g.: a pendulum swings faster and faster

 Particularly bad because:
 Compromises stability

(velocity = big, displacements = crazy, error = crazy)
 Compromises plausibility

(we can see it’s wrong)
 Therefore, a simple way to avoid this:

make sure the simulation always includes attritions
 makes simulation more stable + robust

73

74

3D Video Games
05: Game Physics - part2

2020-04-16

Marco Tarini
Università degli studi di Milano 10

Damping VS
attrition forces

 We can include attrition as forces in our system
 direction: opposite of current velocity direction
 magnitude: proportional to a constant, and to speed

(speed = magnitude of velocity vector)
 note: so this force depends on velocity, not just positions.
 This is the most correct way to model attrition

 Huge simplification: model attrition as
“velocity damping”
 simply, we reduce velocity vectors by a fixed proportion
 e.g. reduce them all by 2% (drag = 0.02)
 makes sense!

Higher speed = more attrition = more loss of speed.
Attrition = a “fixed tax” on speed.

Velocity Damping: the math

 I want to decrease velocity of a percentage
for every second of (virtual) time
 e.g.: if 2% then Drag = 0.02

 how should I update velocity for at every dt ?

 for small enough Drag, this is well approximated by

ௗ௧

1/FPS sec

75

76

3D Video Games
05: Game Physics - part2

2020-04-16

Marco Tarini
Università degli studi di Milano 11

Velocity Damping:
pseudo-code
Vec3 position = …
Vec3 velocity = …

void initState(){
position = …
velocity = …

}

void physicStep(float dt)
{

Vec3 acceleration = force(positions) / mass;
position += velocity * dt;
velocity += acceleration * dt;

}

void main(){
initState();
while (1) do physicStep(1.0 / FPS);

}

velocity *= (1.0 – DRAG * dt);

Velocity Damping: notes

 Problem of Velocity Damping
 tends to exaggerate frictions;

it is needed for robustness, no or almost no damping = bad idea
even when it makes sense, e.g. in space, no air

 Crude approximation: attrition forces are not really linear with speed
 It’s attrition with everything…: air, soil.
 Isotropic force: in reality, attrition force depends of velocity direction

 Practical effects:
 low values: hardly noticeable (except in the long run)
 high values: feels like everything is moving in molasses; (ita: melassa)

everything quickly grinds to a halt
 very high values: (e.g. 50% per frame) basically, no inertia anymore

(useful to quickly converge to minimal energy state: becomes basically a
solver for of statics, not of dynamics)

77

78

3D Video Games
05: Game Physics - part2

2020-04-16

Marco Tarini
Università degli studi di Milano 12

Different numerical integrators
(“numerical ways to compute integrals”)

 Some commonly used alternatives in games:
 “Forward” Euler method (the one seen so far)
 Symplectic Euler method
 Leapfrog method
 Verlet method

 These are just variants of each other – let’s see them!
 From the code point of view, no big change
 There can be semantic difference

(the variables stand for slightly different things)
 They can differ in accuracy / behaviour
 Note: a more accurate method is more efficient

(larger dt are possible, so fewer steps are necessary)

Forward Euler Method: limitations

 efficiency / accuracy: not too good
 error accumulated over time = linear in dt
 it’s only a “first order” method
 Doubles the steps = halve the dt , only halves the errors

(can be better, but no guarantees)
 in practice, scarce stability for large dt
 minor problem: no reversibility, even in theory

 real Newtonian Physics is reversible:
flip all velocities and forces ⇒ go backward in time.

 In our simulation (with Euler): this doesn’t work exactly
 Ability to go reverse a simulation would be useful in games!

E.g. replays in a soccer game ?
 Pro tip: basically, reverse time direction never done like this

To go backward in time accurately, store states

79

80

3D Video Games
05: Game Physics - part2

2020-04-16

Marco Tarini
Università degli studi di Milano 13

Forward Euler pseudo code

Vec3 position = …
Vec3 velocity = …

void initState(){
position = …
velocity = …

}

void physicStep(float dt)
{

Vec3 acceleration = compute_force(position) / mass;
position += velocity * dt;
velocity += acceleration * dt;

}

void main(){
initState();
while (1) do physicStep(1.0 / FPS);

}

Equivalent to…
𝑓 = 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑝୧, . . .)

�⃗� = 𝑓/𝑚
�⃗�ାଵ = �⃗� + �⃗� ⋅ 𝑑𝑡
𝑝ାଵ = 𝑝 + �⃗� ⋅ 𝑑𝑡

Symplectic Euler pseudo code
(aka semi-implicit Euler)
Vec3 position = …
Vec3 velocity = …

void initState(){
position = …
velocity = …

}

void physicStep(float dt)
{

Vec3 acceleration = compute_force(position) / mass;
velocity += acceleration * dt;
position += velocity * dt;

}

void main(){
initState();
while (1) do physicStep(1.0 / FPS);

}

Equivalent to…
𝑓 = 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑝୧, . . .)

�⃗� = 𝑓/𝑚
�⃗�ାଵ = �⃗� + �⃗� ⋅ 𝑑𝑡
𝑝ାଵ = 𝑝 + �⃗�𝒊ା𝟏 ⋅ 𝑑𝑡

just flip the order

81

82

3D Video Games
05: Game Physics - part2

2020-04-16

Marco Tarini
Università degli studi di Milano 14

Forward Euler VS Symplectic Euler
(warning: over-simplifications)

 From the code point of view, they are very similar
 The semantics changes:
 in Symplectic Euler

the position altered using next frame velocity
 (it’s “wrong”, in a sense – but works better)

 Similar properties, but better in practice
 Same order of convergence (still just one)
 On average, better behavior
 More stable, more accurate

Leapfrog Integration

84

85

3D Video Games
05: Game Physics - part2

2020-04-16

Marco Tarini
Università degli studi di Milano 15

Leapfrog Integration

t (in dt)0.0 0.5 1.0 1.5 2.0 2.5

Pos Vel Pos Vel Pos Vel

Leapfrog Integration
first step

t (in dt)0.0 0.5 1.0 1.5 2.0 2.5

Pos0

Vel0

Vel

2/

...),(

05.0

0

dtavv

pfa

86

87

3D Video Games
05: Game Physics - part2

2020-04-16

Marco Tarini
Università degli studi di Milano 16

Leapfrog Integration

t (in dt)0.0 0.5 1.0 1.5 2.0 2.5

Pos Vel Pos Vel Vel

dtvpp 5.001

dtavv

pfa

5.05.1

1 ...),(

dtvpp 5.112

dtavv

pfa

5.15.2

2 ...),(

Pos

dtvpp 5.223

Pos

Leapfrog method: pros and cons

 Same cost as Euler – and basically same code
 Velocity stored in status = velocity “half a dt ago”

(and after updating it: “half a frame in the future”)
 Only real difference: the initialization of speed

 Better theorical accuracy, for the same dt
 better asymptotic behavior:

it’s a second order instead of first!
 cumulated error: proportional to dt2 instead of dt
 error per frame: proportional to dt3 instead of dt2

 Bonus: fully reversible!
 (in theory only. Beware e.g. floating point errors)

 But: requires fixed dt during all the simulation
 for the theory to work as advertised

88

89

