
3D Video Games                                
05: Game Physics - part3

2020-04-23

Marco Tarini                                  
Università degli studi di Milano     1

Course Plan 

lec.  1: Introduction  
lec.  2: Mathematics for 3D Games 

lec.  3: Scene Graph 
lec.  4: Game 3D Physics  + 
lec.  5: Game Particle Systems 
lec.  6: Game 3D Models 
lec.  7: Game Textures 
lec.  8: Game 3D Animations 
lec.  9: Game 3D Audio 
lec. 10: Networking for 3D Games
lec. 11: Artificial Intelligence for 3D Games 
lec. 12: Game 3D Rendering Techniques

Verlet integration method

 Idea: remove velocity from state
 Current velocity is implicit
 It’s defined from: 
 current pos 𝐩

 last pos 𝐩
which we need to record

�⃗� = (𝐩 − 𝐩 )/𝑑𝑡

𝐩

𝐩  = 𝐩 + �⃗�  · 𝑑𝑡

𝐩

Euler & friends

Verlet

90

91



3D Video Games                                
05: Game Physics - part3

2020-04-23

Marco Tarini                                  
Università degli studi di Milano     2

Verlet integration method

one 
step

expanding 
this…

init 
state

𝐩 = . . .
𝐩 = . . .

𝑓 = 𝑓𝑢𝑛(𝐩 , … )

�⃗� = 𝑓/𝑚
�⃗� = (𝐩 − 𝐩 )/𝑑𝑡
�⃗� = �⃗� + �⃗� ⋅ 𝑑𝑡
𝐩 = 𝐩 + �⃗� ⋅ 𝑑𝑡

Verlet method

𝐩 ⟵ 𝐩
𝐩 ⟵ 𝐩

init 
state

one 
step

𝐩 ⟵ . . .
𝐩 ⟵ . . .

𝑓 ⟵ 𝑓𝑢𝑛(𝐩 )

�⃗� ⟵ 𝑓/𝑚
𝐩 ⟵ 2𝐩 − 𝐩 + �⃗� ⋅ 𝑑𝑡

92

93



3D Video Games                                
05: Game Physics - part3

2020-04-23

Marco Tarini                                  
Università degli studi di Milano     3

Verlet: characteristics

 Velocity is kept implicit
 but that doesn’t save RAM: 

we need so store previous position instead

 Good efficiency / accuracy ratio
 per step error: linear with dt
 accumulated error: order of dt2  (second order method)

 Extra bonus: reversibility
 it’s possible to go backward in t and 

reach the initial state
 that, in theory… careful with implementation details

Verlet: caveats

 it assumes a constant dt (time-step duration)
 if it varies: corrections are needed!  (which ones?)

 Q: how to act on velocity (which is now implicit)?
 e.g. to apply impulses

 A: change  𝐩 instead

 Q: how to act of positions w/o impacting velocity?
 e.g. to apply teleports / kinematic motions

 A: displace both  𝐩 and  𝐩 by the same amount

 Q: how to apply velocity damps?
 A: act on 𝐩  or 𝐩 (see below)

94

95



3D Video Games                                
05: Game Physics - part3

2020-04-23

Marco Tarini                                  
Università degli studi di Milano     4

dt updates in Verlet
(if they are not constant)

Problem:
if  𝑑𝑡 now changes to a new 𝑑𝑡′

then, all pold must be updated to some 𝐩

Find p'old : �⃗� = (𝐩 − 𝐩 )/𝑑𝑡
�⃗� = (𝐩 − 𝐩 )/𝑑𝑡′

𝐩 = 𝐩 ⋅ (𝑑𝑡 − 𝑑𝑡′)/𝑑𝑡 + 𝐩 ⋅ 𝑑𝑡′/𝑑𝑡

current velocity �⃗�
and position 𝐩
must not change

 We want to multiply  �⃗� a factor 𝑐
 before applying accelerations

 We can do that using a more general formula for 𝐩

Velocity damping in Verlet

𝐩 = 1 + 𝑐 ⋅ 𝐩 − 𝑐 ⋅ 𝐩 + 𝑑𝑡 ⋅ �⃗� 

𝐩 =            2   ⋅ 𝐩         −   1   ⋅ 𝐩      + 𝑑𝑡 ⋅ �⃗� 

e.g. 0.98
obtained as
(1-𝑑𝑡·𝑐 )

 Velocity at next frame: �⃗� = (𝐩 − 𝐩 )/𝑑𝑡

implicit

96

98



3D Video Games                                
05: Game Physics - part3

2020-04-23

Marco Tarini                                  
Università degli studi di Milano     5

Velocity damping in Verlet
(geometric interpretation)

𝐩 = 1.98 ⋅ 𝐩 − 0.98 ⋅ 𝐩𝐩 =  2 ⋅ 𝐩  −   1   ⋅ 𝐩

𝐩

𝐩

𝐩

𝐩 = 𝑚𝑖𝑥(  𝐩  ,   𝐩 ,  2)

That is ,
𝐩 is an extrapolation
of   𝐩  ,  𝐩  :

�⃗�

�⃗�

That is ,
𝐩 is a different extrapolation
of   𝐩  ,  𝐩  :

𝐩 = 𝑚𝑖𝑥(  𝐩  ,   𝐩 ,  1.98)

𝐩

𝐩

𝐩
�⃗�

0.98�⃗�

a bit shorter

Verlet with PBD 
“Position Based Dynamics”

𝐩 = 𝐩
𝐩 = 𝐩

init 
state

one 
step

𝐩 ⟵  . . .

𝐩 ⟵  . . .

𝑓 ⟵ 𝑓𝑢𝑛(𝐩 )

�⃗� ⟵ 𝑓/𝑚

𝐩 ⟵ 2𝐩 − 𝐩 + �⃗� ⋅ 𝑑𝑡

Enforce constraints on (𝐩 ) 💡

99

100



3D Video Games                                
05: Game Physics - part3

2020-04-23

Marco Tarini                                  
Università degli studi di Milano     6

Position Based Dynamics

 A positional constraint is 
an equation/inequality 
involving the positions of particles. 
 Useful, for example, to model consistency conditions
 Like “solid objects don’t compenetrate each other”, 

or “steel bars won’t bend”
 We will see specific examples soon

 We enforce (impose) positional constraint directly
by displacing the positions of particles 
 Thanks to Verlet: this displacement automatically cause 

some appropriate update of the velocity!
 not necessarily the correct one, but a plausible one

a formula 
with ‘=‘ ‘>’ ‘<‘ etc.

💡

Verlet + Position Based Dynamics.
Advantages
 flexibility: different constraints can be used to model 

many different phenomena
 Useful constraints are straightforward to define 
 They are easy to impose (they involve only few particles)
 They can be used to model many possible phenomena
 Esamples: see following slides

 robustness : plausibility is ensured by explicitly 
enforced the conditions we want to see 
 For exampe: a ball won’t ever be seen outside the box 

containing it (at lest, not for long)
 Bypasses the need to using forces / impulses to enforce

the same consistency condition
 Which is much more difficult to enforce

101

102



3D Video Games                                
05: Game Physics - part3

2020-04-23

Marco Tarini                                  
Università degli studi di Milano     7

Example of positional constraint

«Particles must stay 
within [0 – 100] x [0 – 100] »

for(int i=0; i<NUM_PARTICLES; i++) 
{

p[i].x = clamp( p[i].x, 0, 100 );
p[i].y = clamp( p[i].y, 0, 100 );

}

a

b

Imposing constraint: simple clamp !
ex:

1000

100

Imposing constraints like this is a first part of collision response.
For re-bounces, impulses must still be added (see collisions). 

Example of positional constraint: 
equidistance constraint

«Particles a and b must stay at distance d »

103

104



3D Video Games                                
05: Game Physics - part3

2020-04-23

Marco Tarini                                  
Università degli studi di Milano     8

Enforce equidistance constraints

if  𝐩 − 𝐩 < 𝑑

if  𝐩 − 𝐩 > 𝑑

Enforce equidistance constraints: 
pseudo code
Vector3 pa, pb; // curr positions of a,b
float d;        // distance (to enforce)

Vector3 d = pa – pb;
float currDist = v.length;

d /= currDist;  // normalization of d

float delta = currDist – d ;

pa += ( 0.5 * delta) * d;
pb -= ( 0.5 * delta) * d;

assuming equal mass, each particle moves half the way
(see later for the general case)

105

106



3D Video Games                                
05: Game Physics - part3

2020-04-23

Marco Tarini                                  
Università degli studi di Milano     9

Enforcing sets of constraints

 Many constraints to impose:
when you solve one  you break another one!

 Simultaneous enforcement: computationally expensive

 Practical solution: enforce them in cascade
(Gauss-Seidel fashon):

Repeat until convergence (= max error below threshold)
…but at most for N times! even 1 (remember: soft real time)

Constr.
1

Constr.
2

Constr.
N

...

Enforcing sets of constraints

 Note: 
 The whole loop for imposing the constraints happen in 

the constraint enforcement phase on one physics step!
 Convergence:

 if constraints are not contradictory
 if convergence not reached (or solution doesn’t exist):

never mind, next frames will fix it (it’s fairly robust)
 needed iterations (typically): 1 ~ 10 (efficient!).
 Optimization (to decrease number of needed iterations): 

solve the most unsatisfied constraints first 
 Problem: it’s a sequential approach! 

 parallelized versions (similar to Jacobi) are possible
 they have a worse convergence in practice

(they require more iterations)

107

108



3D Video Games                                
05: Game Physics - part3

2020-04-23

Marco Tarini                                  
Università degli studi di Milano     10

Equidistance constraints
VS springs

 They are similar
 they both mean: 

these 2 particles “want to be” at this distance (not more, not less)
 Differences:

 spring:
 applied during 

force evaluation step
 affecting forces, 

therefore accelerations
 models a deformable spring 

between the two particles
 of a given length

 sometimes called 
a “SOFT” constraint

 equidistance constraint: 
 applied during 

constraint enforcement
 directly affecting 

positions
 models a rigid rod 

between the two particles
 of a given length

 sometimes called 
an “HARD” constraint

 A physic engine can combine them in one object!

We can combine equidistance
constraints to obtain…
 Rigid bodies

 Articulated bodies

 Ragdolls

 Cloth

 Non-elastic ropes

 And more

109

110



3D Video Games                                
05: Game Physics - part3

2020-04-23

Marco Tarini                                  
Università degli studi di Milano     11

Compounds of particles
disguised as rigid bodies

Combining equidistance constraints
we obtain rigid objects
 Rigid body dynamics

as emerging behavior
 without explicitly updating

their orientation, angular vel,
angular acc., etc.

A box?
(rigid object)
A configuration of:
• 4 particles 
• 6 equidistance constraints

111

112



3D Video Games                                
05: Game Physics - part3

2020-04-23

Marco Tarini                                  
Università degli studi di Milano     12

Example

NO

STEP 0

NO

STEP 1
before constraints

NO

STEP 1
after 1st constraint

Example

NO

STEP 1
after all constraints

multiple times

STEP 1
(implicit) velocities

NO

In total: the “box”, 
under gravity + impact
• had rotated
• gained angular velocity

(will keep rotating by 
inertia)

even the system does not 
(explicitly) handle rotations 
or
angular velocities

(works in 3D as well!)

113

114



3D Video Games                                
05: Game Physics - part3

2020-04-23

Marco Tarini                                  
Università degli studi di Milano     13

More examples of
positional constraints

 Preserve volume of some object: «Volume is 𝑣  »
 How to impose it:
1. Estimate current total volume 𝑣 

2. uniform scaling of the entire object of  𝑣  /𝑣 

 Fixed positions: «particle 𝑎  stays in 𝐩  »
 particles «pinned in position»
 trivial to impose, but useful!

 Angle constraints, e.g. 𝛂 < 𝛂
 e.g. on joints: «elbows cannot bend backward»

 Coplanarity / collinearity
 Non interpenetration 

 this is part of collision handling – see collisions later

𝐩
𝐩

𝐩
𝛂

Enforcing a positional constraint:
the general case.

 Check: does the equation/inequality hold? 
 If so, nothing to do! 
 Else:
 All positions must be displaced a bit so that it does
 Infinite ways to achieve this. Which one to pick?
 Answer: 

minimize the sum of squared displacements
(with respect to current position)
weighted by particle masses

 Find minimizer by analytically solving simple problems
(in closed form, “analytically” = “on paper”)

115

116



3D Video Games                                
05: Game Physics - part3

2020-04-23

Marco Tarini                                  
Università degli studi di Milano     14

Enforcing a positional constraint
the general case: formally problem

 We want to enforce a constraint 𝒞 on particles a , b , c,…
with have mass ma, mb, mc … 

 𝒞 defined as an equation/inequality of their positions  pa  , pb , pc , …

 We must apply the displacements 𝑑  ,  𝑑  ,  𝑑
which minimize:

among all the choices that satisfy this,

we want the one which minimizes this

argmin
 ,  , ,…

ma 𝑑 + mb 𝑑 + mc 𝑑 + ⋯

such that   𝒞 pa + 𝑑    ,pb + 𝑑    ,pc + 𝑑    , …

Enforcing positional constraint
Example: equidistance constraint

 To enforce the constraint 
“particles a and b must stay at distance k ”
 input: current positions pa, pb

 input: masses ma, mb

 We need to the the displacements 𝑑  ,  𝑑  
found by minimizing:

argmin
 ,  

ma 𝑑 + mb 𝑑

such that  pa + 𝑑 − pb + 𝑑 = 𝑘

 And the solution (in closed form) is…

117

118



3D Video Games                                
05: Game Physics - part3

2020-04-23

Marco Tarini                                  
Università degli studi di Milano     15

Equidistance constraints: solution for 
non-equal masses
Vector3 pa, pb; // curr positions of a,b
float ma, mb;   // masses of a,b
float d;        // distance (to enforce)

Vector3 v = pa – pb;
float currDist = v.length;

v /= currDist;  // normalization of v

float delta = currDist – d ;

/* solutions of the minimization: */
pa += ( mb/(ma+mb) * delta) * v;
pb -= ( ma/(ma+mb) * delta) * v;

Enforcing positional constraint
Example: “don’t sink into a plane”

 We want to enforce the constraint 
“particle a must be above a constant plane ”
 Given: position of the particle pa and its mass ma

 Point on a plane pq and its normal (unit vec) 𝑛

 We need to apply the displacement 𝑑
found by minimizing:

argmin
 ,  

ma 𝑑

such that  pa − pq 𝑛 > 0

 And the solution (in closed form) is, trivially…

119

120



3D Video Games                                
05: Game Physics - part3

2020-04-23

Marco Tarini                                  
Università degli studi di Milano     16

In pseudocode

Vector3 pa; // curr positions of a
float ma;   // mass (no effect here)
Vector3 pq; // point on the plane
Vector3 nq; // normal of the plane (unit)

Vector3 v = pa – pq;
float currDist = Vector3.dot( v , n );

if (currDist < 0.0) 
pa -= currDist * n; // just project!

else {} // constrain holds, do nothing

Rigid objects as compounds of 
constrained  particles: advantages

 Interesting/rich/useful set of “emerging behaviors”
(i.e. effects with “just automatically happens”) :
 rigid, deformable, jointed objects

 made of particles + hard constraints

 their angular velocities
 rotation around proper axis

 their barycenter
 their momentum of inertia

 angular velocity is maintained

 somewhat believable bounces on “impacts”
 for more control: impact impulses can be added (see collisions)

consequence 
of 
constraints 
disallowing 
compene-
tration

you don’t 
need to 
compute
or store 
these

121

122



3D Video Games                                
05: Game Physics - part3

2020-04-23

Marco Tarini                                  
Università degli studi di Milano     17

Particles + constraint,
or rigid bodies?

 Rigid-body based systems:
 explicitly compute dynamics for rigid bodies
 updating their rotation, angular speed,…

 Particles-based systems:
 only compute dynamics for particles 
 rigid (or deformable, or jointed) bodies 

as an emerging behavior

 Mixed systems:
 use both
 may even dynamically swap between the 

two representations for rigid bodies

Rigid body as particles + constraints:
Challenges

 Approximations are introduced
 e.g.: mass is concentrated in a few locations

 Scalability issues
 many constraints to enforce, many particles to track

 Some of the info which is kept implicit
is needed by the rest of the game engine
 and must therefore be extracted 
 example: the transform (position + orientation) of the 

“rigid body” is needed to render the associated mesh
 similarly: angular speed, barycenter pos, velocity…

124

125


