Course Plan

lec. 1: Introduction

lec. 2: Mathematics for 3D Games
lec. 3: Scene Graph
lec. 4: Game 3D Physics $-0^{+}+\bigcirc$
lec. 5: Game Particle Systems 1
lec. 6: Game 3D Models OI
lec. 7: Game Textures
lec. 8: Game 3D Animations
lec. 9: Game 3D Audio
lec. 10: Networking for 3D Games
lec. 11: Artificial Intelligence for 3D Games
lec. 12: Game 3D Rendering Techniques
90

Verlet integration method

- Idea: remove velocity from state
- Current velocity is implicit
- It's defined from:
- current pos $\mathbf{p}_{\text {now }}$
- last pos $\mathbf{p}_{\text {old }}$ which we need to record

$$
\begin{gathered}
\mathbf{p}_{\text {now }}=\mathbf{p}_{\text {old }}+\vec{v} \cdot d t \\
\quad \Longrightarrow \\
\vec{v}=\left(\mathbf{p}_{\text {now }}-\mathbf{p}_{\text {old }}\right) / d t
\end{gathered}
$$

05: Game Physics - part3

92

93

Verlet: characteristics

- Velocity is kept implicit
- but that doesn't save RAM:
we need so store previous position instead
- Good efficiency / accuracy ratio
- per step error: linear with $d t$
- accumulated error: order of $d t^{2}$ (second order method)
- Extra bonus: reversibility
- it's possible to go backward in t and reach the initial state
- that, in theory... careful with implementation details

Verlet: caveats
\triangle it assumes a constant $d t$ (time-step duration)

- if it varies: corrections are needed! (which ones?)
$\triangle \mathrm{Q}$: how to act on velocity (which is now implicit)?
- e.g. to apply impulses
- A: change $\mathbf{p}_{\text {old }}$ instead
$\triangle \mathrm{Q}$: how to act of positions w/o impacting velocity?
- e.g. to apply teleports / kinematic motions
- A: displace both $\mathbf{p}_{\text {new }}$ and $\mathbf{p}_{\text {old }}$ by the same amount
$\triangle \mathrm{Q}$: how to apply velocity damps?
- A: act on $\mathbf{p}_{\text {old }}$ or $\mathbf{p}_{\text {next }}$ (see below)

95

dt updates in Verlet

(if they are not constant)

Problem:

if $d t$ now changes to a new $d t^{\prime}$ then, all $\mathbf{p}_{\text {old }}$ must be updated to some $\mathbf{p}_{\text {old }}^{\prime}$

Find $\mathbf{p}_{\text {old }}^{\prime}: \quad \vec{v}=\left(\mathbf{p}_{\text {now }}-\mathbf{p}_{\text {old }}\right) / d t \quad \begin{gathered}\text { current velocity } \vec{v} \\ \text { and position }\end{gathered}$ $\vec{v}=\left(\mathbf{p}_{\text {now }}-\mathbf{p}_{\text {old }}^{\prime}\right) / d t^{\prime} \quad$ and position $\mathbf{p}_{\text {now }}$
\Longrightarrow

$$
\mathbf{p}_{\text {old }}^{\prime}=\mathbf{p}_{\text {now }} \cdot\left(d t-d t^{\prime}\right) / d t+\mathbf{p}_{o l d} \cdot d t^{\prime} / d t
$$

96

Velocity damping in Verlet

implicit

- Velocity at next frame: $\vec{v}=\left(\mathbf{p}_{\text {next }}-\mathbf{p}_{\text {now }}\right) / d t$
- We want to multiply \vec{v} a factor $c_{\text {damp }} \quad$ e.g.0.98
- before applying accelerations obtained as
(1-dt $\cdot c_{D R A G}$)
- We can do that using a more general formula for $\mathbf{p}_{\text {next }}$

$$
\mathbf{p}_{\text {next }}=2 \cdot \mathbf{p}_{\text {now }}-1 \cdot \mathbf{p}_{\text {old }}+d t^{2} \cdot \vec{a}
$$

$$
\mathbf{p}_{\text {next }}=\left(1+c_{\text {damp }}\right) \cdot \mathbf{p}_{\text {now }}-c_{\text {damp }} \cdot \mathbf{p}_{\text {old }}+d t^{2} \cdot \vec{a}
$$

100

Marco Tarini

Università degli studi di Milano

Position Based Dynamics

a formula

- A positional constraint is with '=' '>' <' etc. an equation/inequality involving the positions of particles.
- Useful, for example, to model consistency conditions
- Like "solid objects don't compenetrate each other", or "steel bars won't bend"
- We will see specific examples soon

We enforce (impose) positional constraint directly by displacing the positions of particles

- Thanks to Verlet: this displacement automatically cause some appropriate update of the velocity!
- not necessarily the correct one, but a plausible one

101

Verlet + Position Based Dynamics.

Advantages

- flexibility: different constraints can be used to model many different phenomena
- Useful constraints are straightforward to define
- They are easy to impose (they involve only few particles)
- They can be used to model many possible phenomena
- Esamples: see following slides
- robustness : plausibility is ensured by explicitly enforced the conditions we want to see
- For exampe: a ball won't ever be seen outside the box containing it (at lest, not for long)
- Bypasses the need to using forces / impulses to enforce the same consistency condition
- Which is much more difficult to enforce

103

Example of positional constraint: equidistance constraint

«Particles \boldsymbol{a} and \boldsymbol{b} must stay at distance \boldsymbol{d} »

105

```
Enforce equidistance constraints:
pseudo code
Vector3 pa, pb; // curr positions of a,b
float d; // distance (to enforce)
Vector3 d = pa - pb;
float currDist = v.length;
d /= currDist; // normalization of d
float delta = currDist - d ;
pa += ( 0.5 * delta) * d;
pb -= ( 0.5 * delta) * d;
```


Enforcing sets of constraints

- Many constraints to impose: when you solve one \rightarrow you break another one!
- Simultaneous enforcement: computationally expensive
- Practical solution: enforce them in cascade (Gauss-Seidel fashon):

Repeat until convergence (= max error below threshold)
...but at most for N times! even 1 (remember: soft real time)

107

Enforcing sets of constraints

- Note:
- The whole loop for imposing the constraints happen in the constraint enforcement phase on one physics step!
- Convergence:
- if constraints are not contradictory
- if convergence not reached (or solution doesn't exist): never mind, next frames will fix it (it's fairly robust)
- needed iterations (typically): $1 \sim 10$ (efficient!).
- Optimization (to decrease number of needed iterations): solve the most unsatisfied constraints first
Problem: it's a sequential approach! ©
- parallelized versions (similar to Jacobi) are possible
- they have a worse convergence in practice (they require more iterations)

Equidistance constraints

VS springs

- They are similar
- they both mean:
these 2 particles "want to be" at this distance (not more, not less)
- Differences:
- equidistance constraint:
- spring:
- applied during
constraint enforcement
- directly affecting positions
- models a rigid rod between the two particles
- of a given length
- sometimes called an "HARD" constraint
- applied during force evaluation step
- affecting forces, therefore accelerations
- models a deformable spring between the two particles
- of a given length
- sometimes called a "SOFT" constraint
- A physic engine can combine them in one object!

We can combine equidistance constraints to obtain...

- Rigid bodies
- Articulated bodies
- Ragdolls
- Cloth
- Non-elastic ropes

- And more

Combining equidistance constraints we obtain rigid objects

- Rigid body dynamics as emerging behavior
- without explicitly updating their orientation, angular vel, angular acc., etc.

A box?
(rigid object)
A configuration of:

- 4 particles
- 6 equidistance constraints

113

114

More examples of positional constraints

- Preserve volume of some object: «Volume is v_{C} »
- How to impose it:

1. Estimate current total volume v
2. uniform scaling of the entire object of $\sqrt[3]{v_{C} / v}$

- Fixed positions: «particle a stays in \mathbf{p}_{a} »
- particles «pinned in position»
- trivial to impose, but useful!
- Angle constraints, e.g. $\boldsymbol{\alpha}<\boldsymbol{\alpha}_{\text {max }}$
- e.g. on joints: «elbows cannot bend backward»
- Coplanarity / collinearity
- Non interpenetration
- this is part of collision handling - see collisions later

Enforcing a positional constraint: the general case.

- Check: does the equation/inequality hold?
- If so, nothing to do!
- Else:
- All positions must be displaced a bit so that it does
- Infinite ways to achieve this. Which one to pick?
- Answer:
minimize the sum of squared displacements
(with respect to current position)
weighted by particle masses
- Find minimizer by analytically solving simple problems (in closed form, "analytically" = "on paper")

Enforcing a positional constraint the general case: formally problem

- We want to enforce a constraint \mathcal{C} on particles $\mathrm{a}, \mathrm{b}, \mathrm{c}, \ldots$ with have mass $m_{\mathrm{a}^{\prime}} m_{\mathrm{b}}, m_{\mathrm{c}} \ldots$
- \mathcal{C} defined as an equation/inequality of their positions $\mathbf{p}_{\mathrm{a}}, \mathbf{p}_{\mathrm{b}}, \mathbf{p}_{\mathrm{c}}, \ldots$
- We must apply the displacements $\overrightarrow{d_{\mathrm{a}}}, \overrightarrow{d_{\mathrm{b}}}, \overrightarrow{d_{\mathrm{c}}}$ which minimize:

$$
\begin{aligned}
& \underset{\overrightarrow{d_{\mathrm{a}}}, \overrightarrow{d_{\mathrm{b}}}, \overrightarrow{d_{\mathrm{c}}}, \ldots}{\operatorname{argmin}}\left(m_{\mathrm{a}}\left\|\overrightarrow{d_{\mathrm{a}}}\right\|^{2}+m_{\mathrm{b}}\left\|\overrightarrow{d_{\mathrm{b}}}\right\|^{2}+m_{\mathrm{c}}\left\|\overrightarrow{d_{\mathrm{c}}}\right\|^{2}+\cdots\right) \\
& \text { such that } \mathcal{C}\left(\mathbf{p}_{\mathrm{a}}+\overrightarrow{\mathrm{a}_{\mathrm{a}}}, \mathbf{p}_{\mathrm{b}}+\overrightarrow{d_{\mathrm{b}}}, \mathbf{p}_{\mathrm{c}}+\overrightarrow{d_{\mathrm{c}}}, \ldots\right)
\end{aligned}
$$

Enforcing positional constraint

Example: equidistance constraint

- To enforce the constraint "particles a and b must stay at distance k "
- input: current positions $\mathbf{p}_{a} \mathbf{p}_{\mathrm{b}}$
- input: masses $\mathrm{m}_{\mathrm{a}} \mathrm{m}_{\mathrm{b}}$
- We need to the the displacements $\overrightarrow{d_{\mathrm{a}}}, \overrightarrow{d_{\mathrm{b}}}$ found by minimizing:

$$
\begin{aligned}
& \underset{\overrightarrow{d_{\mathrm{a}}}, \overrightarrow{d_{\mathrm{b}}}}{\operatorname{argmin}}\left(\mathrm{~m}_{\mathrm{a}}\left\|\overrightarrow{d_{\mathrm{a}}}\right\|^{2}+\mathrm{m}_{\mathrm{b}}\left\|\overrightarrow{d_{\mathrm{b}}}\right\|^{2}\right) \\
& \text { such that }\left\|\left(\mathbf{p}_{\mathrm{a}}+\overrightarrow{d_{\mathrm{a}}}\right)-\left(\mathbf{p}_{\mathrm{b}}+\overrightarrow{d_{\mathrm{b}}}\right)\right\|=k
\end{aligned}
$$

- And the solution (in closed form) is...

```
Equidistance constraints: solution for
non-equal masses
    Vector3 pa, pb; // curr positions of a,b
    float ma, mb; // masses of a,b
    float d; // distance (to enforce)
    Vector3 v = pa - pb;
    float currDist = v.length;
    v /= currDist; // normalization of v
    float delta = currDist - d ;
    /* solutions of the minimization: */
    pa += ( mb/(ma+mb) * delta) * v;
    pb -= ( ma/(ma+mb) * delta) * v;
```


Enforcing positional constraint

 Example: "don't sink into a plane"- We want to enforce the constraint "particle a must be above a constant plane " - Given: position of the particle \mathbf{p}_{a} and its mass m_{a} - Point on a plane \mathbf{p}_{q} and its normal (unit vec) \hat{n}_{q}
- We need to apply the displacement $\overrightarrow{d_{\mathrm{a}}}$ found by minimizing:

$$
\begin{aligned}
& \underset{\overrightarrow{d_{\mathrm{a}}}, \overline{d_{\mathrm{b}}}}{\operatorname{argmin}}\left(\mathrm{~m}_{\mathrm{a}}\left\|\overrightarrow{d_{\mathrm{a}}}\right\|^{2}\right) \\
& \text { such that }\left\|\left(\mathbf{p}_{\mathrm{a}}-\mathbf{p}_{\mathrm{q}}\right) \cdot \hat{n}_{q}\right\|>0
\end{aligned}
$$

- And the solution (in closed form) is, trivially...

```
    In pseudocode
    Vector3 pa; // curr positions of a
    float ma; // mass (no effect here)
    Vector3 pq; // point on the plane
    Vector3 nq; // normal of the plane (unit)
    Vector3 v = pa - pq;
    float currDist = Vector3.dot( v , n );
    if (currDist < 0.0)
        pa -= currDist * n; // just project!
    else {} // constrain holds, do nothing
```

121

Rigid objects as compounds of constrained particles: advantages

- Interesting/rich/useful set of "emerging behaviors" (i.e. effects with "just automatically happens") :
- rigid, deformable, jointed objects
- made of particles + hard constraints
- their angular velocities
- rotation around proper axis
- their barycenter
- their momentum of inertia

you don't need to
compute
or store
these
consequence of
constraints disallowing compenetration
- angular velocity is maintained
- somewhat believable bounces on "impacts"
- for more control: impact impulses can be added (see collisions)

Particles + constraint, or rigid bodies?

- Rigid-body based systems:
- explicitly compute dynamics for rigid bodies
- updating their rotation, angular speed,...
- Particles-based systems:
- only compute dynamics for particles
- rigid (or deformable, or jointed) bodies as an emerging behavior
- Mixed systems:
- use both
- may even dynamically swap between the two representations for rigid bodies

Rigid body as particles + constraints: Challenges

- Approximations are introduced
- e.g.: mass is concentrated in a few locations
- Scalability issues
- many constraints to enforce, many particles to track
- Some of the info which is kept implicit
is needed by the rest of the game engine
- and must therefore be extracted $*$
- example: the transform (position + orientation) of the "rigid body" is needed to render the associated mesh
- similarly: angular speed, barycenter pos, velocity...

