
3D Video Games
05: Game Physics
Part 5: Collisions

2020-04-27

Marco Tarini
Università degli studi di Milano 1

Course Plan

lec. 1: Introduction 
lec. 2: Mathematics for 3D Games 

lec. 3: Scene Graph 
lec. 4: Game 3D Physics  + 
lec. 5: Game Particle Systems 
lec. 6: Game 3D Models 
lec. 7: Game Textures 
lec. 8: Game 3D Animations 
lec. 9: Game 3D Audio 
lec. 10: Networking for 3D Games
lec. 11: Artificial Intelligence for 3D Games 
lec. 12: Game 3D Rendering Techniques

Momentum:
(𝑚஺ + 𝑚஻) 𝑣⃗஺ା஻

(completely) inelastic impact

BEFORE: AFTER:

 𝑚஺

𝑣⃗஺

 𝑚஻

𝑣⃗஻

𝑣⃗஺ା஻ = ?
𝑚஺ + 𝑚஻

Momentum:
 𝑚஺ 𝑣⃗஺ + 𝑚஻ 𝑣⃗஻

the only unknown, so …

16

17

3D Video Games
05: Game Physics
Part 5: Collisions

2020-04-27

Marco Tarini
Università degli studi di Milano 2

(completely) elastic impact: 1D case

BEFORE: AFTER:

𝑣஺
ᇱ =?

 𝑚஻ 𝑚஺ 𝑚஻ 𝑚஺

𝑣஺ 𝑣஻
𝑣஻

ᇱ =?

signed
scalar

momentum:
𝑚஺ 𝑣஺

ᇱ + 𝑚஻ 𝑣஻
ᇱ

momentum:
𝑚஺ 𝑣஺ + 𝑚஻ 𝑣஻

energy:
ଵ

ଶ
𝑚஺ 𝑣஺

ଶ +
ଵ

ଶ
𝑚஻𝑣஻

ଶ

energy:
ଵ

ଶ
𝑚஺ 𝑣஺

ᇱ ଶ
+

ଵ

ଶ
𝑚஻𝑣஻

ᇱ ଶ

(completely) elastic impact: 1D case

momentum
conservation:

ଵ

ଶ
𝑚஺ 𝑣஺

ଶ +
ଵ

ଶ
𝑚஻𝑣஻

ଶ =
ଵ

ଶ
𝑚஺ 𝑣஺

ᇱ ଶ
+

ଵ

ଶ
𝑚஻𝑣஻

ᇱ ଶ

⟹ 𝑖஻ = −𝑖஺

𝑚஺ 𝑣஺ + 𝑚஻ 𝑣஻ = 𝑚஺ 𝑣஺
ᇱ + 𝑚஻ 𝑣஻

ᇱ

energy
conservation:

⟹ 𝑚஺ 𝑣஺
ଶ + 𝑚஻𝑣஻

ଶ = 𝑚஺ 𝑣஺+
௜ಲ

௠ಲ

ଶ

+ 𝑚஻ 𝑣஻+
௜ಳ

௠ಳ

ଶ

new velocities are
defined by the impulses: 𝑣஺

ᇱ = 𝑣஺ +
𝑖஺

𝑚஺

 𝑣஻
ᇱ = 𝑣஻ +

 𝑖஻

𝑚 ஻

⟹ 𝑚஺ 𝑣஺
ଶ + 𝑚஻𝑣஻

ଶ = 𝑚஺ 𝑣஺
ଶ +

௜ಲ
మ

௠ಲ
+ 2 𝑣஺ 𝑖஺ + 𝑚஻ 𝑣஻

ଶ +
௜ಳ

మ

௠ಳ
+ 2 𝑣஻ 𝑖஻

⟹ 𝑚஺ 𝑣஺ + 𝑚஻ 𝑣஻ = 𝑚஺ 𝑣஺+
௜ಲ

௠ಲ
+ 𝑚஻ 𝑣஻+

௜ಳ

௠ಳ

⟹ 0 =
𝑖஺

ଶ

𝑚஺
+ 2 𝑣஺ 𝑖஺ +

𝑖஻
ଶ

𝑚஻
+ 2 𝑣஻ 𝑖஻

signed
scalars

18

21

3D Video Games
05: Game Physics
Part 5: Collisions

2020-04-27

Marco Tarini
Università degli studi di Milano 3

(completely) elastic impact: 1D case

momentum
& energy
conservation:

𝑖஺
ଶ

𝑚஺
 + 2 𝑣஺ 𝑖஺ +

𝑖஺
ଶ

𝑚஻
 − 2 𝑣஻ 𝑖஺ = 0

𝑖஺
ଶ

𝑚஺ + 𝑚஻

𝑚஺ 𝑚஻
 + 𝑖஺ 2 𝑣஺ − 𝑣஻ = 0

momentum
conservation: 𝑖஻ = −𝑖஺

𝑖஺ =
2 𝑚஺ 𝑚஻

𝑚஺ + 𝑚஻
𝑣஻ − 𝑣஺

(it’s just the 3rd law of dynamics)

𝑖஺ = 𝑖஻ = 0

solution 1 solution 2

𝑖஺ 𝑖஺

𝑚஺ + 𝑚஻

𝑚஺ 𝑚஻
 + 2 𝑣஺ − 𝑣஻ = 0

before the impact after the impact

Some special cases
(exercise: verify them)

 Completely elastic case (1D):
 equal masses?

the two velocities just swap
 one-way impact, with A is static?

𝑣௕ just flips

 Completely inelastic case:
 equal masses?

new velocity is the average
 one-way impact, with A static?

B also stops dead

𝑚஺ ⟶ ∞
&

𝑣஺ = 0

22

23

3D Video Games
05: Game Physics
Part 5: Collisions

2020-04-27

Marco Tarini
Università degli studi di Milano 4

𝑛ො𝑛ො

(completely) elastic impact: 3D case

BEFORE: AFTER:

𝑣⃗஺
ᇱ = ?

 𝑚஻
 𝑚஺

momentum:
𝑚஺ 𝑣⃗஺

ᇱ + 𝑚஻ 𝑣⃗஻
ᇱ

momentum:
𝑚஺𝑣⃗஺ + 𝑚஻𝑣⃗஺

energy:
ଵ

ଶ
𝑚஺ 𝑣⃗஺

ଶ +
ଵ

ଶ
𝑚஻ 𝑣⃗஻

ଶ

energy:
ଵ

ଶ
𝑚஺ 𝑣⃗஺

ᇱ ଶ +
ଵ

ଶ
𝑚஻ 𝑣⃗஻

ᇱ ଶ

𝑣⃗஺
𝑣⃗஻

𝑣⃗஻
ᇱ = ?

 𝑚஻
 𝑚஺

(completely) elesastic impact: 3D case

 Additional assumption:
 Ǝ impact plane, with normal 𝑛ො

 o, in 2D: impact line

 impulses must be orthogonal to this plane 𝚤஺,஻ = 𝑖஺,஻𝑛ො

 To solve the impact
 find scalar velocities 𝑣஺,஻ as the component of

vector velocities 𝑣⃗஺,஻ along 𝑛ො : 𝑣஺,஻ = 𝑣⃗஺,஻ ȉ 𝑛ො

 find scalar impulses 𝑖஺,஻ (use the 1D case)
 find vector impulses 𝚤஺,஻ = 𝑖஺,஻𝑛ො

 apply them to vector velocities

vector
impulses

scalar
impulses,

pos. or neg.
(the unkonwns)

we need
this
data!

24

25

3D Video Games
05: Game Physics
Part 5: Collisions

2020-04-27

Marco Tarini
Università degli studi di Milano 5

A simple geometric subproblem

 Solution in 3 steps:
(1) 𝑣௡ ← 𝑣⃗ ȉ 𝑛ො

(2) 𝑣⃗௡ ← 𝑣௡ 𝑛ො

(3) 𝑣⃗௣ ← 𝑣⃗ − 𝑣⃗௡

 Useful because:
 only 𝑣⃗௡ is affected by elastic impacts with plane
 only 𝑣⃗௣ is affected by frictions with plane (dump it!)

 𝑣௡ is used to solve elastic impacts (use 1D case)

𝑣⃗௣

𝑛ො 𝑣⃗

 𝑣⃗௡ + 𝑣⃗௣

𝑣⃗௡

 Given velocity 𝑣⃗
and the impact plane normal 𝑛ො ,
split 𝑣⃗ in the vector sum
𝑣⃗ = 𝑣⃗௡ + 𝑣⃗௣ with
 𝑣⃗௡ orthogonal to the plane (parallel to 𝑛ො)
 𝑣⃗௣ parallel to the plane (orthogonal to 𝑛ො)

note:
𝑣𝑛 is a signed scalar
𝑣⃗𝑛 is a vector

Impact between rigid bodies(*) - notes
(*) i.e. with angular velocities too

 We only have seen impacts between particles
 i.e. we disregarded angular velocities
 if rigid bodies are approximated with particles

+ distance constraints, then this is all we need to do
 Effect of elastic / inelastic impacts on angular velocities

will be an (approximated) emerging behavior👍
 Impacts between real rigid bodies require to explicitly

compute the two post-impact angular velocities too
 Same principles apply:
 Angular momentum: it is always preserved too
 Anelastic impact: post-impact angular velocities must also match
 Elastic impact: kinetic rotational energy must also be preserved
 Mixes (bounciness): interpolate angular velocities too

26

27

3D Video Games
05: Game Physics
Part 5: Collisions

2020-04-27

Marco Tarini
Università degli studi di Milano 6

From detection to response

The collision detection needs to tell us:

 Collision? Yes / No
 «do any two things overlap?»

And, when it’s a Yes…
 «safe» positions

 overlap-free position for both objects
 needed to teleport things there

 normal of one collision plane
 ~orientation of the impacted part
 needed to resolve the impact

(except for purely inelastic)

«collision data»
output of detection,
input of rensponse

Collision Handling

 Collision detection
 find out when they occur
 if so, produce collision data

for the response

 Collision response
 compute their effects

28

29

3D Video Games
05: Game Physics
Part 5: Collisions

2020-04-27

Marco Tarini
Università degli studi di Milano 7

Collision detection

 The usual problem: efficiency
 Observation:
 most of objects (by far),

most of time (by far),
do NOT collide.

 for efficiency,
the case to optimize is the «no-collision» case

 «early reject» of the text

Collision detection

 Efficiency issues:

a) test between object pairs:
 Must be efficient

b)avoid quadratic explosions
of needed tests
 N objects  N2 tests ?

30

31

3D Video Games
05: Game Physics
Part 5: Collisions

2020-04-27

Marco Tarini
Università degli studi di Milano 8

Geometric proxies

Geometric proxies

A simplified representation of the
shape (the geometry) of the object, used in its place

 usually, a much cruder approx.
than the model used for rendering

Two uses:
 as Bounding Volume

 upper bound of the object spatial extension;
object is all inside the proxy

→ for conservative tests

 as Collider (or hit-box, or collision object)
 approximation of the object spatial extension
→ for approximate tests

(“hit-box” is a misnomer: it’s not necessarily a “box”)

32

33

3D Video Games
05: Game Physics
Part 5: Collisions

2020-04-27

Marco Tarini
Università degli studi di Milano 9

Semantic of a
geometric proxy

intersection(proxy_A , <something>) ≠ Ø ?

 if proxy_A serves as Bounding Volume :
 if NO: no collision
 if YES: we don’t know yet

 if proxy_A serves as Collider :
 if NO: no collision
 if YES: collision detected !

 Must compute collision data
from proxy_A

Despite the semantic difference,
the same data type can be used for all proxies.

Another proxy,
a point,
a ray…

An «early reject»
optimization

A (lossy) approximation
of the
collision detection

Geometric proxies - used not only
for collision detection but also:

 physic engine
 collision response
 computation of barycenter

/ rotational inertia
(assumes uniform specific weight)

 rendering optimizations
 “view frustum culling” (bounding volumes)
 “occlusion culling” (bounding volumes)

 AI
 visibility tests
 in general, simulation of NPC senses

 GUI
 picking (one of the ways)

 3D sounds
 sound absorption (rarely done)

Basically, for any other task except rendering,
for a game engine, objects are their proxies.

34

35

3D Video Games
05: Game Physics
Part 5: Collisions

2020-04-27

Marco Tarini
Università degli studi di Milano 10

Geometric proxies: types

 Sphere
 Capsules
 Half-spaces
 Axis Aligned (Bounding) Box

 aka AABB
 Generic (Bounding) Box
 Discrete Oriented Polytope

 aka DOP
 Ellipsoid

 axis aligned or not
 Cylinders
 Convex polyhedron
 Non-convex polyhedron

 Meshes
 …

🤔 choosing Geometric Proxies:
things to consider

 Workload needed to compute / create them
 RAM space needed to store
 Behavior under transformations
 the ones we plan to use, e.g. isometries

 How good is the geometric approximation
 for the objects we use in the game
 for bounding volumes ==> how small / tight is it?
 for colliders ==> how close the approximation is it?

 Workload for an intersection test
 with other proxies …
 also, easy to compute / good is the collision data?

36

37

3D Video Games
05: Game Physics
Part 5: Collisions

2020-04-27

Marco Tarini
Università degli studi di Milano 11

Geometry proxies:
Sphere

  easy to compute automatically
 only the approximatively optimal one

  tiny to store
 center (a point) + radius (a scalar) – or, a vec4 (𝑐௫, 𝑐௬, 𝑐௭, 𝑟)

  collision test are trivial (against anything)
 how? exercise – including collision data computation

  can easily undergo translation/rotation/scaling
 how? exercise – note: scaling must be uniform

  approximation quality:
 it depends on the object (as usual), but often, quite poor.
 what about, e.g.: a head? A character? A house? A sword?

Geometry proxies:
«Capsule»

 Generalizes the sphere:
 Sphere ≜ the set of points

having dist. from a point ≤ radius
 Capsule ≜ the set of points

having dist. from a segment ≤ radius
 i.e. 1 cylinder ended with 2 half-spheres (all 3 with same radius)

 Stored with:
 a segment (its two end-points)
 a radius (a scalar)

 Exercise :
 Q: how does it «score» w.r.t. the above measures?
 (A: quite well → a very popular proxy in games!)

38

39

3D Video Games
05: Game Physics
Part 5: Collisions

2020-04-27

Marco Tarini
Università degli studi di Milano 12

Geometry proxies:
a half space

 Trivial, but useful!
 e.g. for a flat terrain,

or a wall…

 Storage:
 a point on the plane + its normal
 better: a normal + a distance from the origin
 which is a vec4 (𝑛௫, 𝑛௬, 𝑛௭, 𝑘)

 how to test , transform, etc:
 easy and efficient algorithms (check me)

𝑛

Reminder:
Plane VS Point test

 Input: a point 𝐪
and a plane given by:
 its normal: 𝑛
 a point on it at random: 𝐩

 Q: on which side of the plane is 𝐪 ?
 A: it’s the sign of

𝑛 ȉ 𝐪 − 𝐩 =
𝑛 ȉ 𝐪 − 𝑛 ȉ 𝐩 =
𝑛 ȉ 𝐪 + 𝑘 =

(𝑛௫, 𝑛௬, 𝑛௭, 𝑘) ȉ (𝑞௫, 𝑞௬, 𝑞௭, 1)

𝐪

𝐩
𝑛

the vec4
representing the plane

𝑘 = −𝑛 ȉ 𝐩
(minus distance of plane from orig.)

𝑛

𝑛

𝑛

40

41

3D Video Games
05: Game Physics
Part 5: Collisions

2020-04-27

Marco Tarini
Università degli studi di Milano 13

Geometry proxies:
«AABB»

Axis Aligned (Bounding) Box
 Easy to compute / update
 Concise to store
 Hint: it’s three interval: on X, on Y, on Z

 Easy to do collision test…

 Transforms:
  cannot be rotated
 can be easily scaled / translated

Misnomer: not necessarily
a “bounding” volume:
can be used as a collider too

Geometry proxies:
Box

 “Parallelepiped”
 non axis aligned
 generalized version

of AABB
 storage:

 a rotation +
 an AABB

 Can be freely transformed
 note: only if scaling is uniform

 Tests: a more computations needed

42

43

3D Video Games
05: Game Physics
Part 5: Collisions

2020-04-27

Marco Tarini
Università degli studi di Milano 14

Geometry proxies (in 2D):
a convex polygon

 Intersection of half-planes
 each delimited by a line

 Stored as:
 a collection

of (oriented) lines
 Test:
 a point is inside the proxy

iff
it is in each half-plane

 Flexible (good approximations)…
and still moderate complexity

Geometry proxies (in 3D):
a Convex Polyhedron

 Intersection of half-space
 Similar as previous,

but in 3D
 stored as a collection

of planes
 each plane = a vec4

(normal, distance from origin)
 tests: inside the proxy

iff
inside each half-space

44

45

3D Video Games
05: Game Physics
Part 5: Collisions

2020-04-27

Marco Tarini
Università degli studi di Milano 15

Geometry proxies (in 3D):
a (general) Polyhedron

 Luxury Colliders :)
 The most accurate approximations
 The most expensive tests / storage

 Specific algorithms to test for collisions
 requiring some preprocessing
 and data structures (BSP-trees, see later)

 Creation (as meshes):
 sometimes, with automatic simplification
 often, hand-designed by artists (low poly modelling)
 collision proxies are assets!

 Similar to a 3D mesh used for rendering?
 Many differences (compare with mesh, lecture 6)

they would be wasted,
as Bounding Volumes !

potentially concave

Geometry proxies:
composite proxies

 A proxy can be a union of sub-proxies
 inside the proxy iff inside of any sub proxy

 Very expressive
 better approximation for many objects,

even with very few proxies
 note: union of convex proxies can be concave !

 Still quite efficient to store / test
 More difficult to construct
 (especially automatically)

46

48

3D Video Games
05: Game Physics
Part 5: Collisions

2020-04-27

Marco Tarini
Università degli studi di Milano 16

3D Meshes as
proxies

mesh for rendering
(~600 tri faces)

(in wireframe) Collider:
10 (polygonal) faces

3D Meshes as
proxies

mesh for rendering
(~300 tri faces)

(in wireframe)

Collider:
12 (polygonal) faces

49

50

3D Video Games
05: Game Physics
Part 5: Collisions

2020-04-27

Marco Tarini
Università degli studi di Milano 17

Bounding Volume +
Collision Object

if (!intersect(boundingVol, X))

{

// nothing to do: early reject!

}

else {

CollisionData d;

if (collide(hitBox, X , &d))

{

collision_rensponse(d);

}
}

a simpler
Bounding Volume

around
a more complex
Collision Object
approximating

the same object

note: intersect and collide
aren’t the same function here

Which geometric proxy
to support in a game (-engine)?

 an implementation choice of the Physics Engine
 # of intersection tests algorithm to be implemented

quadratic with # of types supported
 supported proxy types

can be used as either Bounding Volumes or Hit-Boxes

Type A

Type B

Type C

Type A Type B Type C

algorithm
1

algorithm
2

algorithm
3

algorithm
10

algorithm
7

algorithm
6

VS a Point a Ray

algorithm
4

algorithm
11

algorithm
8

algorithm
5

algorithm
12

algorithm
9

useful,
e.g.
for visibility

51

52

3D Video Games
05: Game Physics
Part 5: Collisions

2020-04-27

Marco Tarini
Università degli studi di Milano 18

How to construct geometry proxies?

 “Given an object representation M,
build an appropriate proxy for it”
 a M = 3D model of e.g. a dragon, a castle, a character…

 It’s a difficult task to automatize
 especially for colliders

 it’s a bit easier for bounding volumes
 especially if we want to pick simpler (more efficient) proxies

 such as collection of a few spheres, capsules, boxes
 especially if we want good approximations

 It’s often done manually by digital artists

Geometry proxies are assets !

Collision detection:
strategies

 Static Collision detection
 (“a posteriori”, “discrete”)
 approximated
 simple + quick

 Dynamic Collision detection
 (“a priori”, “continuous”)
 accurate
 demanding

t

t + dt

COLLISION

t

NO COLLISION

t + dt

COLLISION

53

54

3D Video Games
05: Game Physics
Part 5: Collisions

2020-04-27

Marco Tarini
Università degli studi di Milano 19

Collision detection:
Static

 Check for collision only after each step

 Problem: non-penetration is temporarily violated
 patching it in collision response

not always easy

 Problem: «tunnel effect»
 Can happen if:

- dt too large,
- or, speed too large
- or, objects too thin

«static»
(because objects are tested
as if they are still)

«a posteriori»
(because coll. are detected
after they happen)

«discrete»
(because we check at
discrete time intervals)

t

NO COLLISION

t + dt

NO COLLISION 

aka

Collision detection:
Dynamic

 Much more accurate detection
 Bonus:

 no need to «telefort the object in the safe position».
 it never left a safe position!
 preventing penetrations easier than curing them.

 Much more difficult to do, too
 for one-way collision: check the penetration between the static object

and the volume swept (ita: spazzato) by the moving object during the
entire duration of the frame

 easy for: points (swept volume = segment)
 easy for: spheres (swept volume = capsule – which one?)

 Basically, practical to apply only in these cases
 and when required

«dynamic»
(because moving objects
are tested)

«a priori»
(because coll. are detected
before they happen)

«continuous»
(because it is checked
over a time interval)

Aka:aka

55

56

3D Video Games
05: Game Physics
Part 5: Collisions

2020-04-27

Marco Tarini
Università degli studi di Milano 20

Collision detection
in traditional («real») 2D games

 Much easier problem
 We can leverage collision detection for 2D sprites

 it’s accurate: «pixel perfect»
 it’s efficient: HW supported

(hard-wired support like sprite rendering)
 no need for proxy approximation,

and no much need for optimizations either

NO COLLISION NO COLLISION COLLISION

in screen space

Collision detection

 Efficiency issues:

a) test between object pairs:
 Must be efficient

b)avoid quadratic explosions
of needed tests
 N objects  N2 tests ?

57

58

3D Video Games
05: Game Physics
Part 5: Collisions

2020-04-27

Marco Tarini
Università degli studi di Milano 21

How to avoid a quadratic explosions
of needed tests

 Classes of solutions:
1) spatial indexing structures
2) BVH – Bounding Volume Hierarchies

Spatial indexing structures

 Data structures to accelerate queries of the kind:
“I’m here. Which object is around me?”

 Tasks:
 (1) construction / update

 for static parts of the scene, a preprocessing. Cheap! 
 for moving parts of the scene, an update! Consuming! 
 (another good reason to tag them)

 (2) access / usage
 as fast as possible

 Commonest structures (in games):
 Regular Grid
 kD-Tree
 Oct-Tree

 and it’s 2D equivalent: the Quad-Tree
 BSP Tree

59

60

3D Video Games
05: Game Physics
Part 5: Collisions

2020-04-27

Marco Tarini
Università degli studi di Milano 22

a b

c d e f

g h i j

k l

m n o p

q

r

s

Regular Grid (or: lattice)

the scene

a
b
c
d
e
f
g
h
i
j
k
l

m
n
o
p
q
r
s

Regular Grid (or: lattice)

 Array 3D of cells (all the same size)
 each cell = a list of pointers to collison objects

 Indexing function:
 Point3D  cell index, (constant time!)

 Construction: (“scatter” approach)
 for each object B, find all the cells it touches, add a pointer to B to them

 Queries: (“gather” approach)
 given query point p,

return all object in corresponding cell and adjacent ones
 Difficult choice: cell size

 too small: memory occupancy explodes
 too big: too many objects in one cell (not efficient)

 Problem: RAM size
 Cubic with resolution!
 Most cells are empty: hash tables can be used

to balance efficiency / storage-update cost

61

62

