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Course Plan 

lec.  1: Introduction  
lec.  2: Mathematics for 3D Games 

lec.  3: Scene Graph 
lec.  4: Game 3D Physics  + 
lec.  5: Game Particle Systems 
lec.  6: Game 3D Models 
lec.  7: Game Textures 
lec.  8: Game 3D Animations 
lec.  9: Game 3D Audio 
lec. 10: Networking for 3D Games
lec. 11: Artificial Intelligence for 3D Games 
lec. 12: Game 3D Rendering Techniques

Momentum:
( 𝑚஺ +  𝑚஻) 𝑣⃗஺ା஻

(completely) inelastic impact 

BEFORE: AFTER:

 𝑚஺

𝑣⃗஺

 𝑚஻

𝑣⃗஻

𝑣⃗஺ା஻ = ?
𝑚஺ + 𝑚஻  

Momentum:
 𝑚஺ 𝑣⃗஺ +  𝑚஻ 𝑣⃗஻

the only unknown, so  …

16

17



3D Video Games                                
05: Game Physics                            
Part 5: Collisions

2020-04-27

Marco Tarini                                  
Università degli studi di Milano 2

(completely) elastic impact: 1D case

BEFORE: AFTER:

𝑣஺
ᇱ =?

  𝑚஻  𝑚஺  𝑚஻  𝑚஺

𝑣஺ 𝑣஻
𝑣஻

ᇱ =?

signed
scalar

momentum:
𝑚஺  𝑣஺

ᇱ +  𝑚஻ 𝑣஻
ᇱ

momentum:
𝑚஺ 𝑣஺ +  𝑚஻ 𝑣஻

energy:
ଵ

ଶ
𝑚஺ 𝑣஺

ଶ +
ଵ

ଶ
𝑚஻𝑣஻

ଶ

energy:
ଵ

ଶ
𝑚஺  𝑣஺

ᇱ ଶ
+ 

ଵ

ଶ
𝑚஻𝑣஻

ᇱ ଶ

(completely) elastic impact: 1D case

momentum
conservation:

ଵ

ଶ
𝑚஺ 𝑣஺

ଶ +
ଵ

ଶ
𝑚஻𝑣஻

ଶ =
ଵ

ଶ
𝑚஺  𝑣஺

ᇱ ଶ
+ 

ଵ

ଶ
𝑚஻𝑣஻

ᇱ ଶ

⟹      𝑖஻ = −𝑖஺

𝑚஺ 𝑣஺ +  𝑚஻ 𝑣஻ = 𝑚஺  𝑣஺
ᇱ +  𝑚஻ 𝑣஻

ᇱ

energy
conservation:

⟹     𝑚஺ 𝑣஺
ଶ + 𝑚஻𝑣஻

ଶ = 𝑚஺  𝑣஺+ 
௜ಲ

௠ಲ 

ଶ

+ 𝑚஻  𝑣஻+ 
௜ಳ

௠ಳ 

ଶ

  

new velocities are 
defined by the impulses:  𝑣஺

ᇱ  =  𝑣஺ +
𝑖஺

𝑚஺ 

 𝑣஻
ᇱ  =  𝑣஻ + 

 𝑖஻

𝑚 ஻ 

⟹     𝑚஺ 𝑣஺
ଶ + 𝑚஻𝑣஻

ଶ = 𝑚஺ 𝑣஺
ଶ +

௜ಲ
మ

௠ಲ
+ 2 𝑣஺ 𝑖஺ + 𝑚஻ 𝑣஻

ଶ +
௜ಳ

మ

௠ಳ
+ 2 𝑣஻ 𝑖஻

⟹    𝑚஺ 𝑣஺ +  𝑚஻ 𝑣஻ = 𝑚஺  𝑣஺+
௜ಲ

௠ಲ 
+  𝑚஻  𝑣஻+

௜ಳ

௠ಳ 

⟹       0 =
𝑖஺

ଶ

𝑚஺
+ 2 𝑣஺ 𝑖஺ +

𝑖஻
ଶ

𝑚஻
+ 2 𝑣஻ 𝑖஻

signed
scalars
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(completely) elastic impact: 1D case

momentum
& energy
conservation:

𝑖஺
ଶ

𝑚஺
  +   2 𝑣஺ 𝑖஺   +   

𝑖஺
ଶ

𝑚஻
  −   2 𝑣஻ 𝑖஺ = 0

𝑖஺
ଶ    

𝑚஺ + 𝑚஻

𝑚஺ 𝑚஻
  +  𝑖஺ 2 𝑣஺ −  𝑣஻ =  0

momentum
conservation: 𝑖஻ = −𝑖஺

𝑖஺ =
2 𝑚஺ 𝑚஻

𝑚஺ + 𝑚஻
𝑣஻ − 𝑣஺ 

(it’s just the 3rd law of dynamics)

𝑖஺ = 𝑖஻ = 0

solution 1 solution 2

𝑖஺  𝑖஺ 

𝑚஺ + 𝑚஻

𝑚஺ 𝑚஻
  +  2 𝑣஺ − 𝑣஻ =  0

before the impact after the impact

Some special cases
(exercise: verify them)

 Completely elastic case (1D):
 equal masses? 

the two velocities just swap 
 one-way impact, with A is static?

𝑣௕ just flips

 Completely inelastic case:
 equal masses?

new velocity is the average
 one-way impact, with A static?

B also stops dead

𝑚஺ ⟶ ∞
& 

𝑣஺ = 0
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𝑛ො𝑛ො

(completely) elastic impact: 3D case

BEFORE: AFTER:

𝑣⃗஺
ᇱ = ?

  𝑚஻
  𝑚஺

momentum:
𝑚஺ 𝑣⃗஺

ᇱ +  𝑚஻ 𝑣⃗஻
ᇱ

momentum:
𝑚஺𝑣⃗஺ +  𝑚஻𝑣⃗஺

energy:
ଵ

ଶ
𝑚஺ 𝑣⃗஺

ଶ +
ଵ

ଶ
𝑚஻ 𝑣⃗஻

ଶ

energy:
ଵ

ଶ
𝑚஺ 𝑣⃗஺

ᇱ ଶ + 
ଵ

ଶ
𝑚஻ 𝑣⃗஻

ᇱ ଶ

𝑣⃗஺
𝑣⃗஻

𝑣⃗஻
ᇱ = ?

  𝑚஻
  𝑚஺

(completely) elesastic impact: 3D case

 Additional assumption: 
 Ǝ impact plane, with normal 𝑛ො

 o, in 2D: impact line

 impulses must be orthogonal to this plane  𝚤஺,஻ = 𝑖஺,஻𝑛ො

 To solve the impact
 find scalar velocities 𝑣஺,஻ as the component of 

vector velocities 𝑣⃗஺,஻ along 𝑛ො :   𝑣஺,஻ = 𝑣⃗஺,஻ ȉ 𝑛ො

 find scalar impulses 𝑖஺,஻ (use the 1D case)
 find vector impulses 𝚤஺,஻ = 𝑖஺,஻𝑛ො

 apply them to vector velocities

vector
impulses

scalar
impulses,

pos. or neg.
(the unkonwns)

we need
this
data!
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A simple geometric subproblem

 Solution in 3 steps:
(1) 𝑣௡ ← 𝑣⃗  ȉ  𝑛ො

(2) 𝑣⃗௡ ← 𝑣௡ 𝑛ො

(3) 𝑣⃗௣ ← 𝑣⃗  − 𝑣⃗௡

 Useful because: 
 only 𝑣⃗௡ is affected by elastic impacts with plane
 only 𝑣⃗௣ is affected by frictions with plane (dump it!)

 𝑣௡ is used to solve elastic impacts (use 1D case)

𝑣⃗௣

𝑛ො 𝑣⃗

 𝑣⃗௡ + 𝑣⃗௣

𝑣⃗௡

 Given velocity 𝑣⃗
and the impact plane normal 𝑛ො ,
split 𝑣⃗ in the vector sum
𝑣⃗ =  𝑣⃗௡ + 𝑣⃗௣ with
 𝑣⃗௡ orthogonal to the plane (parallel to 𝑛ො )
 𝑣⃗௣ parallel to the plane (orthogonal to 𝑛ො )

note:
𝑣𝑛 is a signed scalar
𝑣⃗𝑛 is a vector

Impact between rigid bodies(*)  - notes
(*) i.e. with angular velocities too

 We only have seen impacts between particles
 i.e. we disregarded angular velocities
 if rigid bodies are approximated with particles

+ distance constraints, then this is all we need to do
 Effect of elastic / inelastic impacts on angular velocities 

will be an (approximated) emerging behavior👍
 Impacts between real rigid bodies require to explicitly

compute the two post-impact angular velocities too
 Same principles apply:
 Angular momentum: it is always preserved too
 Anelastic impact: post-impact angular velocities must also match
 Elastic impact: kinetic rotational energy must also be preserved
 Mixes (bounciness): interpolate angular velocities too
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From detection to response

The collision detection needs to tell us:

 Collision? Yes / No
 «do any two things overlap?»

And, when it’s a Yes…
 «safe» positions

 overlap-free position for both objects
 needed to teleport things there

 normal of one collision plane
 ~orientation of the impacted part
 needed to resolve the impact 

(except for purely inelastic)

«collision data»
output of detection,
input of rensponse

Collision Handling

 Collision detection
 find out when they occur
 if so, produce collision data 

for the response

 Collision response
 compute their effects
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Collision detection

 The usual problem: efficiency
 Observation:
 most of objects (by far),

most of time (by far),
do NOT collide.

 for efficiency,
the case to optimize is the «no-collision» case

 «early reject» of the text

Collision detection

 Efficiency issues:

a) test between object pairs:
 Must be efficient

b)avoid quadratic explosions 
of needed tests
 N objects  N2 tests ?
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Geometric proxies

Geometric proxies

A simplified representation of the
shape (the geometry) of the object, used in its place

 usually, a much cruder approx. 
than the model used for rendering

Two uses:
 as Bounding Volume

 upper bound of the object spatial extension;
object is all inside the proxy

→ for conservative tests

 as Collider (or hit-box, or collision object)
 approximation of the object spatial extension
→ for approximate tests

(“hit-box” is a misnomer: it’s not necessarily a “box”)
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Semantic of a
geometric proxy

intersection( proxy_A , <something> ) ≠ Ø ?

 if  proxy_A serves as Bounding Volume :
 if NO: no collision
 if YES: we don’t know yet

 if  proxy_A serves as Collider :
 if NO: no collision
 if YES: collision detected !

 Must compute collision data
from proxy_A

Despite the semantic difference,
the same data type can be used for all proxies.

Another proxy,
a point,
a ray…

An «early reject» 
optimization

A (lossy) approximation
of the 
collision detection

Geometric proxies - used not only 
for collision detection but also:

 physic engine
 collision response
 computation of barycenter 

/ rotational inertia 
(assumes uniform specific weight) 

 rendering optimizations
 “view frustum culling” (bounding volumes)
 “occlusion culling” (bounding volumes)

 AI
 visibility tests
 in general, simulation of NPC senses

 GUI
 picking (one of the ways)

 3D sounds
 sound absorption (rarely done)

Basically, for any other task except rendering, 
for a game engine, objects are their proxies.
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Geometric proxies: types

 Sphere
 Capsules
 Half-spaces
 Axis Aligned (Bounding) Box 

 aka AABB
 Generic (Bounding) Box
 Discrete Oriented Polytope 

 aka DOP
 Ellipsoid

 axis aligned or not
 Cylinders
 Convex polyhedron
 Non-convex polyhedron

 Meshes
 …

🤔 choosing Geometric Proxies:
things to consider

 Workload needed to compute / create them
 RAM space needed to store 
 Behavior under transformations
 the ones we plan to use, e.g. isometries

 How good is the geometric approximation
 for the objects we use in the game
 for bounding volumes ==> how small / tight is it?
 for colliders ==> how close the approximation is it?

 Workload for an intersection test
 with other proxies …
 also, easy to compute / good is the collision data?
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Geometry proxies: 
Sphere

  easy to compute automatically
 only the approximatively optimal one

  tiny to store
 center (a point) + radius (a scalar) – or, a vec4 (𝑐௫, 𝑐௬, 𝑐௭, 𝑟)

  collision test are trivial (against anything)
 how? exercise – including collision data computation

  can easily undergo translation/rotation/scaling
 how? exercise – note: scaling must be uniform

  approximation quality: 
 it depends on the object (as usual), but often, quite poor. 
 what about, e.g.: a head? A character? A house? A sword?

Geometry proxies:
«Capsule»

 Generalizes the sphere:
 Sphere ≜ the set of points 

having dist. from a point ≤ radius
 Capsule ≜ the set of points 

having dist. from a segment ≤ radius
 i.e. 1 cylinder ended with 2 half-spheres (all 3 with same radius)

 Stored with:
 a segment (its two end-points)
 a radius (a scalar)

 Exercise : 
 Q: how does it «score» w.r.t. the above measures? 
 (A: quite well → a very popular proxy in games!)
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Geometry proxies:
a half space

 Trivial, but useful!
 e.g. for a flat terrain,

or a wall…

 Storage:
 a point on the plane + its normal
 better: a normal + a distance from the origin
 which is a vec4 (𝑛௫, 𝑛௬, 𝑛௭, 𝑘)

 how to test , transform, etc: 
 easy and efficient algorithms (check me)

𝑛

Reminder:
Plane VS Point test

 Input: a point 𝐪 
and a plane given by:
 its normal: 𝑛
 a point on it at random: 𝐩

 Q: on which side of the plane is 𝐪 ?
 A: it’s the sign of

𝑛  ȉ 𝐪 − 𝐩 =
𝑛 ȉ 𝐪 − 𝑛 ȉ 𝐩 =
𝑛 ȉ 𝐪 + 𝑘  =  

(𝑛௫, 𝑛௬, 𝑛௭, 𝑘) ȉ (𝑞௫, 𝑞௬, 𝑞௭, 1)

𝐪

𝐩
𝑛

the vec4
representing the plane

𝑘 = −𝑛 ȉ 𝐩
(minus distance of plane from orig.)

𝑛

𝑛

𝑛
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Geometry proxies:
«AABB»

Axis Aligned (Bounding) Box
 Easy to compute / update 
 Concise to store
 Hint: it’s three interval: on X, on Y, on Z

 Easy to do collision test…

 Transforms:
  cannot be rotated
 can be easily scaled / translated

Misnomer: not necessarily 
a “bounding” volume: 
can be used as a collider too

Geometry proxies:
Box

 “Parallelepiped” 
 non axis aligned
 generalized version 

of AABB
 storage:

 a rotation +
 an AABB

 Can be freely transformed 
 note: only if scaling is uniform

 Tests: a more computations needed
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Geometry proxies (in 2D):
a convex polygon 

 Intersection of half-planes
 each delimited by a line

 Stored as: 
 a collection

of (oriented) lines
 Test: 
 a point is inside the proxy 

iff
it is in each half-plane

 Flexible (good approximations)…
and still moderate complexity

Geometry proxies (in 3D):
a Convex Polyhedron 

 Intersection of half-space
 Similar as previous,

but in 3D
 stored as a collection

of planes
 each plane = a vec4

(normal, distance from origin)
 tests: inside the proxy 

iff
inside each half-space
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Geometry proxies (in 3D):
a (general) Polyhedron 

 Luxury Colliders :) 
 The most accurate approximations
 The most expensive tests / storage

 Specific algorithms to test for collisions
 requiring some preprocessing
 and data structures (BSP-trees, see later)

 Creation (as meshes):
 sometimes, with automatic simplification
 often, hand-designed by artists (low poly modelling)
 collision proxies are assets!

 Similar to a 3D mesh used for rendering?
 Many differences (compare with mesh, lecture 6)

they would be wasted, 
as Bounding Volumes !

potentially concave

Geometry proxies: 
composite proxies

 A proxy  can be a union of sub-proxies
 inside the proxy iff inside of any sub proxy

 Very expressive
 better approximation for many objects, 

even with very few proxies
 note: union of convex proxies can be concave !

 Still quite efficient to store / test
 More difficult to construct 
 (especially automatically)
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3D Meshes  as
proxies

mesh for rendering
(~600 tri faces)

(in wireframe) Collider:
10 (polygonal) faces

3D Meshes  as
proxies

mesh for rendering
(~300 tri faces)

(in wireframe)

Collider:
12 (polygonal) faces
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Bounding Volume + 
Collision Object 

if (!intersect( boundingVol, X ) ) 

{

// nothing to do: early reject!

} 

else {

CollisionData d;

if (collide( hitBox, X , &d ))

{

collision_rensponse( d );

} 
} 

a simpler
Bounding Volume

around
a more complex
Collision Object
approximating

the same object

note: intersect and collide
aren’t the same function here

Which geometric proxy 
to support in a game (-engine)?

 an implementation choice of the Physics Engine
 # of intersection tests algorithm to be implemented 

quadratic with # of types supported
 supported proxy types 

can be used as either Bounding Volumes or Hit-Boxes

Type A

Type B

Type C

Type A Type B Type C

algorithm 
1

algorithm 
2

algorithm 
3

algorithm 
10

algorithm 
7

algorithm 
6

VS a Point a Ray

algorithm 
4

algorithm 
11

algorithm 
8

algorithm 
5

algorithm 
12

algorithm 
9

useful, 
e.g.
for visibility
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How to construct geometry proxies?

 “Given an object representation M,
build an appropriate proxy for it”
 a M = 3D model of e.g. a dragon, a castle, a character…

 It’s a difficult task to automatize
 especially for colliders

 it’s a bit easier for bounding volumes
 especially if we want to pick simpler (more efficient) proxies

 such as collection of a few spheres, capsules, boxes
 especially if we want good approximations

 It’s often done manually by digital artists

Geometry proxies are assets !

Collision detection:
strategies

 Static Collision detection
 (“a posteriori”, “discrete”)
 approximated
 simple + quick

 Dynamic Collision detection
 (“a priori”, “continuous”)
 accurate
 demanding

t

t + dt

COLLISION

t

NO COLLISION

t + dt

COLLISION
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Collision detection:
Static

 Check for collision only after each step

 Problem: non-penetration is temporarily violated
 patching it in collision response 

not always easy

 Problem: «tunnel effect»
 Can happen if: 

- dt too large, 
- or, speed too large 
- or, objects too thin

«static» 
(because objects are tested
as if they are still)

«a posteriori» 
(because coll. are detected 
after they happen)

«discrete» 
(because we check at 
discrete time intervals)

t

NO COLLISION

t + dt

NO COLLISION 

aka

Collision detection:
Dynamic

 Much more accurate detection
 Bonus:

 no need to «telefort the object in the safe position».
 it never left a safe position!
 preventing penetrations easier than curing them.

 Much more difficult to do, too
 for one-way collision: check the penetration between the static object 

and the volume swept (ita: spazzato) by the moving object during the 
entire duration of the frame 

 easy for: points (swept volume = segment)
 easy for: spheres (swept volume = capsule – which one?)

 Basically, practical to apply only in these cases
 and when required

«dynamic» 
(because moving objects 
are tested)

«a priori» 
(because coll. are detected 
before they happen)

«continuous» 
(because it is checked 
over a time interval)

Aka:aka
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Collision detection
in traditional («real») 2D games

 Much easier problem
 We can leverage collision detection for 2D sprites

 it’s accurate: «pixel perfect» 
 it’s efficient: HW supported

(hard-wired support like sprite rendering)
 no need for proxy approximation, 

and no much need for optimizations either

NO COLLISION NO COLLISION COLLISION

in screen space

Collision detection

 Efficiency issues:

a) test between object pairs:
 Must be efficient

b)avoid quadratic explosions 
of needed tests
 N objects  N2 tests ?
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How to avoid a quadratic explosions 
of needed tests

 Classes of solutions: 
1) spatial indexing structures
2)  BVH – Bounding Volume Hierarchies

Spatial indexing structures

 Data structures to accelerate queries of the kind:
“I’m here. Which object is around me?”

 Tasks:
 (1) construction / update

 for static parts of the scene, a preprocessing. Cheap! 
 for moving parts of the scene, an update! Consuming! 
 (another good reason to tag them)

 (2) access / usage
 as fast as possible

 Commonest structures (in games):
 Regular Grid
 kD-Tree
 Oct-Tree

 and it’s 2D equivalent: the Quad-Tree
 BSP Tree
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Regular Grid  (or: lattice)

the scene

a
b
c
d
e
f
g
h
i
j
k
l

m
n
o
p
q
r
s

Regular Grid  (or: lattice)

 Array 3D of cells (all the same size)
 each cell = a list of pointers to collison objects

 Indexing function:
 Point3D  cell index, (constant time!)

 Construction: (“scatter” approach)
 for each object B, find all the cells it touches, add a pointer to B to them

 Queries: (“gather” approach)
 given query point p, 

return all object in corresponding cell and adjacent ones
 Difficult choice: cell size

 too small: memory occupancy explodes
 too big: too many objects in one cell (not efficient)

 Problem: RAM size
 Cubic with resolution!
 Most cells are empty: hash tables can be used

to balance efficiency / storage-update cost

61

62


