
3D Video Games
05: Game Physics
Part 5: Collisions

2020-04-27

Marco Tarini
Università degli studi di Milano 1

Course Plan

lec. 1: Introduction
lec. 2: Mathematics for 3D Games

lec. 3: Scene Graph
lec. 4: Game 3D Physics +
lec. 5: Game Particle Systems
lec. 6: Game 3D Models
lec. 7: Game Textures
lec. 8: Game 3D Animations
lec. 9: Game 3D Audio
lec. 10: Networking for 3D Games
lec. 11: Artificial Intelligence for 3D Games
lec. 12: Game 3D Rendering Techniques

Momentum:
(𝑚 + 𝑚) �⃗�

(completely) inelastic impact

BEFORE: AFTER:

 𝑚

�⃗�

 𝑚

�⃗�

�⃗� = ?
𝑚 + 𝑚

Momentum:
 𝑚 �⃗� + 𝑚 �⃗�

the only unknown, so …

16

17

3D Video Games
05: Game Physics
Part 5: Collisions

2020-04-27

Marco Tarini
Università degli studi di Milano 2

(completely) elastic impact: 1D case

BEFORE: AFTER:

𝑣 =?
 𝑚 𝑚 𝑚 𝑚

𝑣 𝑣 𝑣 =?

signed
scalar

momentum:
𝑚 𝑣 + 𝑚 𝑣

momentum:
𝑚 𝑣 + 𝑚 𝑣

energy:
𝑚 𝑣 + 𝑚 𝑣

energy:
𝑚 𝑣 + 𝑚 𝑣

(completely) elastic impact: 1D case

momentum
conservation:

𝑚 𝑣 + 𝑚 𝑣 = 𝑚 𝑣 + 𝑚 𝑣

⟹ 𝑖 = −𝑖

𝑚 𝑣 + 𝑚 𝑣 = 𝑚 𝑣 + 𝑚 𝑣

energy
conservation:

⟹ 𝑚 𝑣 + 𝑚 𝑣 = 𝑚 𝑣 +

+ 𝑚 𝑣 +

new velocities are
defined by the impulses: 𝑣 = 𝑣 +

𝑖

𝑚

 𝑣 = 𝑣 +
 𝑖
𝑚

⟹ 𝑚 𝑣 + 𝑚 𝑣 = 𝑚 𝑣 + + 2 𝑣 𝑖 + 𝑚 𝑣 + + 2 𝑣 𝑖

⟹ 𝑚 𝑣 + 𝑚 𝑣 = 𝑚 𝑣 +

+ 𝑚 𝑣 +

⟹ 0 =
𝑖

𝑚
+ 2 𝑣 𝑖 +

𝑖

𝑚
+ 2 𝑣 𝑖

signed
scalars

18

21

3D Video Games
05: Game Physics
Part 5: Collisions

2020-04-27

Marco Tarini
Università degli studi di Milano 3

(completely) elastic impact: 1D case

momentum
& energy
conservation:

𝑖

𝑚
 + 2 𝑣 𝑖 +

𝑖

𝑚
 − 2 𝑣 𝑖 = 0

𝑖
𝑚 + 𝑚

𝑚 𝑚
 + 𝑖 2 𝑣 − 𝑣 = 0

momentum
conservation: 𝑖 = −𝑖

𝑖 =
2 𝑚 𝑚

𝑚 + 𝑚
𝑣 − 𝑣

(it’s just the 3rd law of dynamics)

𝑖 = 𝑖 = 0

solution 1 solution 2

𝑖 𝑖

𝑚 + 𝑚

𝑚 𝑚
 + 2 𝑣 − 𝑣 = 0

before the impact after the impact

Some special cases
(exercise: verify them)

 Completely elastic case (1D):
 equal masses?

the two velocities just swap
 one-way impact, with A is static?

𝑣 just flips

 Completely inelastic case:
 equal masses?

new velocity is the average
 one-way impact, with A static?

B also stops dead

𝑚 ⟶ ∞
&

𝑣 = 0

22

23

3D Video Games
05: Game Physics
Part 5: Collisions

2020-04-27

Marco Tarini
Università degli studi di Milano 4

𝑛𝑛

(completely) elastic impact: 3D case

BEFORE: AFTER:

�⃗� = ?

 𝑚
 𝑚

momentum:
𝑚 �⃗� + 𝑚 �⃗�

momentum:
𝑚 �⃗� + 𝑚 �⃗�

energy:
𝑚 �⃗� + 𝑚 �⃗�

energy:
𝑚 �⃗� + 𝑚 �⃗�

�⃗� �⃗�
�⃗� = ?

 𝑚
 𝑚

(completely) elesastic impact: 3D case

 Additional assumption:
 Ǝ impact plane, with normal 𝑛

 o, in 2D: impact line

 impulses must be orthogonal to this plane 𝚤 , = 𝑖 , 𝑛

 To solve the impact
 find scalar velocities 𝑣 , as the component of

vector velocities �⃗� , along 𝑛 : 𝑣 , = �⃗� , 𝑛

 find scalar impulses 𝑖 , (use the 1D case)
 find vector impulses 𝚤 , = 𝑖 , 𝑛

 apply them to vector velocities

vector
impulses

scalar
impulses,

pos. or neg.
(the unkonwns)

we need
this
data!

24

25

3D Video Games
05: Game Physics
Part 5: Collisions

2020-04-27

Marco Tarini
Università degli studi di Milano 5

A simple geometric subproblem

 Solution in 3 steps:
(1) 𝑣 ← �⃗� 𝑛

(2) �⃗� ← 𝑣 𝑛

(3) �⃗� ← �⃗� − �⃗�

 Useful because:
 only �⃗� is affected by elastic impacts with plane
 only �⃗� is affected by frictions with plane (dump it!)

 𝑣 is used to solve elastic impacts (use 1D case)

�⃗�

𝑛 �⃗�

 �⃗� + �⃗�
�⃗�

 Given velocity �⃗�
and the impact plane normal 𝑛 ,
split �⃗� in the vector sum
�⃗� = �⃗� + �⃗� with
 �⃗� orthogonal to the plane (parallel to 𝑛)
 �⃗� parallel to the plane (orthogonal to 𝑛)

note:
𝑣𝑛 is a signed scalar
�⃗�𝑛 is a vector

Impact between rigid bodies(*) - notes
(*) i.e. with angular velocities too

 We only have seen impacts between particles
 i.e. we disregarded angular velocities
 if rigid bodies are approximated with particles

+ distance constraints, then this is all we need to do
 Effect of elastic / inelastic impacts on angular velocities

will be an (approximated) emerging behavior👍
 Impacts between real rigid bodies require to explicitly

compute the two post-impact angular velocities too
 Same principles apply:
 Angular momentum: it is always preserved too
 Anelastic impact: post-impact angular velocities must also match
 Elastic impact: kinetic rotational energy must also be preserved
 Mixes (bounciness): interpolate angular velocities too

26

27

3D Video Games
05: Game Physics
Part 5: Collisions

2020-04-27

Marco Tarini
Università degli studi di Milano 6

From detection to response

The collision detection needs to tell us:

 Collision? Yes / No
 «do any two things overlap?»

And, when it’s a Yes…
 «safe» positions

 overlap-free position for both objects
 needed to teleport things there

 normal of one collision plane
 ~orientation of the impacted part
 needed to resolve the impact

(except for purely inelastic)

«collision data»
output of detection,
input of rensponse

Collision Handling

 Collision detection
 find out when they occur
 if so, produce collision data

for the response

 Collision response
 compute their effects

28

29

3D Video Games
05: Game Physics
Part 5: Collisions

2020-04-27

Marco Tarini
Università degli studi di Milano 7

Collision detection

 The usual problem: efficiency
 Observation:
 most of objects (by far),

most of time (by far),
do NOT collide.

 for efficiency,
the case to optimize is the «no-collision» case

 «early reject» of the text

Collision detection

 Efficiency issues:

a) test between object pairs:
 Must be efficient

b)avoid quadratic explosions
of needed tests
 N objects N2 tests ?

30

31

3D Video Games
05: Game Physics
Part 5: Collisions

2020-04-27

Marco Tarini
Università degli studi di Milano 8

Geometric proxies

Geometric proxies

A simplified representation of the
shape (the geometry) of the object, used in its place

 usually, a much cruder approx.
than the model used for rendering

Two uses:
 as Bounding Volume

 upper bound of the object spatial extension;
object is all inside the proxy

→ for conservative tests

 as Collider (or hit-box, or collision object)
 approximation of the object spatial extension
→ for approximate tests

(“hit-box” is a misnomer: it’s not necessarily a “box”)

32

33

3D Video Games
05: Game Physics
Part 5: Collisions

2020-04-27

Marco Tarini
Università degli studi di Milano 9

Semantic of a
geometric proxy

intersection(proxy_A , <something>) ≠ Ø ?

 if proxy_A serves as Bounding Volume :
 if NO: no collision
 if YES: we don’t know yet

 if proxy_A serves as Collider :
 if NO: no collision
 if YES: collision detected !

 Must compute collision data
from proxy_A

Despite the semantic difference,
the same data type can be used for all proxies.

Another proxy,
a point,
a ray…

An «early reject»
optimization

A (lossy) approximation
of the
collision detection

Geometric proxies - used not only
for collision detection but also:

 physic engine
 collision response
 computation of barycenter

/ rotational inertia
(assumes uniform specific weight)

 rendering optimizations
 “view frustum culling” (bounding volumes)
 “occlusion culling” (bounding volumes)

 AI
 visibility tests
 in general, simulation of NPC senses

 GUI
 picking (one of the ways)

 3D sounds
 sound absorption (rarely done)

Basically, for any other task except rendering,
for a game engine, objects are their proxies.

34

35

3D Video Games
05: Game Physics
Part 5: Collisions

2020-04-27

Marco Tarini
Università degli studi di Milano 10

Geometric proxies: types

 Sphere
 Capsules
 Half-spaces
 Axis Aligned (Bounding) Box

 aka AABB
 Generic (Bounding) Box
 Discrete Oriented Polytope

 aka DOP
 Ellipsoid

 axis aligned or not
 Cylinders
 Convex polyhedron
 Non-convex polyhedron

 Meshes
 …

🤔 choosing Geometric Proxies:
things to consider

 Workload needed to compute / create them
 RAM space needed to store
 Behavior under transformations
 the ones we plan to use, e.g. isometries

 How good is the geometric approximation
 for the objects we use in the game
 for bounding volumes ==> how small / tight is it?
 for colliders ==> how close the approximation is it?

 Workload for an intersection test
 with other proxies …
 also, easy to compute / good is the collision data?

36

37

3D Video Games
05: Game Physics
Part 5: Collisions

2020-04-27

Marco Tarini
Università degli studi di Milano 11

Geometry proxies:
Sphere

 easy to compute automatically
 only the approximatively optimal one

 tiny to store
 center (a point) + radius (a scalar) – or, a vec4 (𝑐 , 𝑐 , 𝑐 , 𝑟)

 collision test are trivial (against anything)
 how? exercise – including collision data computation

 can easily undergo translation/rotation/scaling
 how? exercise – note: scaling must be uniform

 approximation quality:
 it depends on the object (as usual), but often, quite poor.
 what about, e.g.: a head? A character? A house? A sword?

Geometry proxies:
«Capsule»

 Generalizes the sphere:
 Sphere ≜ the set of points

having dist. from a point ≤ radius
 Capsule ≜ the set of points

having dist. from a segment ≤ radius
 i.e. 1 cylinder ended with 2 half-spheres (all 3 with same radius)

 Stored with:
 a segment (its two end-points)
 a radius (a scalar)

 Exercise :
 Q: how does it «score» w.r.t. the above measures?
 (A: quite well → a very popular proxy in games!)

38

39

3D Video Games
05: Game Physics
Part 5: Collisions

2020-04-27

Marco Tarini
Università degli studi di Milano 12

Geometry proxies:
a half space

 Trivial, but useful!
 e.g. for a flat terrain,

or a wall…

 Storage:
 a point on the plane + its normal
 better: a normal + a distance from the origin
 which is a vec4 (𝑛 , 𝑛 , 𝑛 , 𝑘)

 how to test , transform, etc:
 easy and efficient algorithms (check me)

𝑛

Reminder:
Plane VS Point test

 Input: a point 𝐪
and a plane given by:
 its normal: 𝑛
 a point on it at random: 𝐩

 Q: on which side of the plane is 𝐪 ?
 A: it’s the sign of

𝑛 𝐪 − 𝐩 =
𝑛 𝐪 − 𝑛 𝐩 =
𝑛 𝐪 + 𝑘 =

(𝑛 , 𝑛 , 𝑛 , 𝑘) (𝑞 , 𝑞 , 𝑞 , 1)

𝐪

𝐩
𝑛

the vec4
representing the plane

𝑘 = −𝑛 𝐩
(minus distance of plane from orig.)

𝑛

𝑛

𝑛

40

41

3D Video Games
05: Game Physics
Part 5: Collisions

2020-04-27

Marco Tarini
Università degli studi di Milano 13

Geometry proxies:
«AABB»

Axis Aligned (Bounding) Box
 Easy to compute / update
 Concise to store
 Hint: it’s three interval: on X, on Y, on Z

 Easy to do collision test…

 Transforms:
 cannot be rotated
 can be easily scaled / translated

Misnomer: not necessarily
a “bounding” volume:
can be used as a collider too

Geometry proxies:
Box

 “Parallelepiped”
 non axis aligned
 generalized version

of AABB
 storage:

 a rotation +
 an AABB

 Can be freely transformed
 note: only if scaling is uniform

 Tests: a more computations needed

42

43

3D Video Games
05: Game Physics
Part 5: Collisions

2020-04-27

Marco Tarini
Università degli studi di Milano 14

Geometry proxies (in 2D):
a convex polygon

 Intersection of half-planes
 each delimited by a line

 Stored as:
 a collection

of (oriented) lines
 Test:
 a point is inside the proxy

iff
it is in each half-plane

 Flexible (good approximations)…
and still moderate complexity

Geometry proxies (in 3D):
a Convex Polyhedron

 Intersection of half-space
 Similar as previous,

but in 3D
 stored as a collection

of planes
 each plane = a vec4

(normal, distance from origin)
 tests: inside the proxy

iff
inside each half-space

44

45

3D Video Games
05: Game Physics
Part 5: Collisions

2020-04-27

Marco Tarini
Università degli studi di Milano 15

Geometry proxies (in 3D):
a (general) Polyhedron

 Luxury Colliders :)
 The most accurate approximations
 The most expensive tests / storage

 Specific algorithms to test for collisions
 requiring some preprocessing
 and data structures (BSP-trees, see later)

 Creation (as meshes):
 sometimes, with automatic simplification
 often, hand-designed by artists (low poly modelling)
 collision proxies are assets!

 Similar to a 3D mesh used for rendering?
 Many differences (compare with mesh, lecture 6)

they would be wasted,
as Bounding Volumes !

potentially concave

Geometry proxies:
composite proxies

 A proxy can be a union of sub-proxies
 inside the proxy iff inside of any sub proxy

 Very expressive
 better approximation for many objects,

even with very few proxies
 note: union of convex proxies can be concave !

 Still quite efficient to store / test
 More difficult to construct
 (especially automatically)

46

48

3D Video Games
05: Game Physics
Part 5: Collisions

2020-04-27

Marco Tarini
Università degli studi di Milano 16

3D Meshes as
proxies

mesh for rendering
(~600 tri faces)

(in wireframe) Collider:
10 (polygonal) faces

3D Meshes as
proxies

mesh for rendering
(~300 tri faces)

(in wireframe)

Collider:
12 (polygonal) faces

49

50

3D Video Games
05: Game Physics
Part 5: Collisions

2020-04-27

Marco Tarini
Università degli studi di Milano 17

Bounding Volume +
Collision Object

if (!intersect(boundingVol, X))

{

// nothing to do: early reject!

}

else {

CollisionData d;

if (collide(hitBox, X , &d))

{

collision_rensponse(d);

}
}

a simpler
Bounding Volume

around
a more complex
Collision Object
approximating

the same object

note: intersect and collide
aren’t the same function here

Which geometric proxy
to support in a game (-engine)?

 an implementation choice of the Physics Engine
 # of intersection tests algorithm to be implemented

quadratic with # of types supported
 supported proxy types

can be used as either Bounding Volumes or Hit-Boxes

Type A

Type B

Type C

Type A Type B Type C

algorithm
1

algorithm
2

algorithm
3

algorithm
10

algorithm
7

algorithm
6

VS a Point a Ray

algorithm
4

algorithm
11

algorithm
8

algorithm
5

algorithm
12

algorithm
9

useful,
e.g.
for visibility

51

52

3D Video Games
05: Game Physics
Part 5: Collisions

2020-04-27

Marco Tarini
Università degli studi di Milano 18

How to construct geometry proxies?

 “Given an object representation M,
build an appropriate proxy for it”
 a M = 3D model of e.g. a dragon, a castle, a character…

 It’s a difficult task to automatize
 especially for colliders

 it’s a bit easier for bounding volumes
 especially if we want to pick simpler (more efficient) proxies

 such as collection of a few spheres, capsules, boxes
 especially if we want good approximations

 It’s often done manually by digital artists

Geometry proxies are assets !

Collision detection:
strategies

 Static Collision detection
 (“a posteriori”, “discrete”)
 approximated
 simple + quick

 Dynamic Collision detection
 (“a priori”, “continuous”)
 accurate
 demanding

t

t + dt

COLLISION

t

NO COLLISION

t + dt

COLLISION

53

54

3D Video Games
05: Game Physics
Part 5: Collisions

2020-04-27

Marco Tarini
Università degli studi di Milano 19

Collision detection:
Static

 Check for collision only after each step

 Problem: non-penetration is temporarily violated
 patching it in collision response

not always easy

 Problem: «tunnel effect»
 Can happen if:

- dt too large,
- or, speed too large
- or, objects too thin

«static»
(because objects are tested
as if they are still)

«a posteriori»
(because coll. are detected
after they happen)

«discrete»
(because we check at
discrete time intervals)

t

NO COLLISION

t + dt

NO COLLISION

aka

Collision detection:
Dynamic

 Much more accurate detection
 Bonus:

 no need to «telefort the object in the safe position».
 it never left a safe position!
 preventing penetrations easier than curing them.

 Much more difficult to do, too
 for one-way collision: check the penetration between the static object

and the volume swept (ita: spazzato) by the moving object during the
entire duration of the frame

 easy for: points (swept volume = segment)
 easy for: spheres (swept volume = capsule – which one?)

 Basically, practical to apply only in these cases
 and when required

«dynamic»
(because moving objects
are tested)

«a priori»
(because coll. are detected
before they happen)

«continuous»
(because it is checked
over a time interval)

Aka:aka

55

56

3D Video Games
05: Game Physics
Part 5: Collisions

2020-04-27

Marco Tarini
Università degli studi di Milano 20

Collision detection
in traditional («real») 2D games

 Much easier problem
 We can leverage collision detection for 2D sprites

 it’s accurate: «pixel perfect»
 it’s efficient: HW supported

(hard-wired support like sprite rendering)
 no need for proxy approximation,

and no much need for optimizations either

NO COLLISION NO COLLISION COLLISION

in screen space

Collision detection

 Efficiency issues:

a) test between object pairs:
 Must be efficient

b)avoid quadratic explosions
of needed tests
 N objects N2 tests ?

57

58

3D Video Games
05: Game Physics
Part 5: Collisions

2020-04-27

Marco Tarini
Università degli studi di Milano 21

How to avoid a quadratic explosions
of needed tests

 Classes of solutions:
1) spatial indexing structures
2) BVH – Bounding Volume Hierarchies

Spatial indexing structures

 Data structures to accelerate queries of the kind:
“I’m here. Which object is around me?”

 Tasks:
 (1) construction / update

 for static parts of the scene, a preprocessing. Cheap!
 for moving parts of the scene, an update! Consuming!
 (another good reason to tag them)

 (2) access / usage
 as fast as possible

 Commonest structures (in games):
 Regular Grid
 kD-Tree
 Oct-Tree

 and it’s 2D equivalent: the Quad-Tree
 BSP Tree

59

60

3D Video Games
05: Game Physics
Part 5: Collisions

2020-04-27

Marco Tarini
Università degli studi di Milano 22

a b

c d e f

g h i j

k l

m n o p

q

r

s

Regular Grid (or: lattice)

the scene

a
b
c
d
e
f
g
h
i
j
k
l

m
n
o
p
q
r
s

Regular Grid (or: lattice)

 Array 3D of cells (all the same size)
 each cell = a list of pointers to collison objects

 Indexing function:
 Point3D cell index, (constant time!)

 Construction: (“scatter” approach)
 for each object B, find all the cells it touches, add a pointer to B to them

 Queries: (“gather” approach)
 given query point p,

return all object in corresponding cell and adjacent ones
 Difficult choice: cell size

 too small: memory occupancy explodes
 too big: too many objects in one cell (not efficient)

 Problem: RAM size
 Cubic with resolution!
 Most cells are empty: hash tables can be used

to balance efficiency / storage-update cost

61

62

