
3D Video Games
05: Game Physics
Part 6: Collisions

2020-05-04

Marco Tarini
Università degli studi di Milano 1

Course Plan

lec. 1: Introduction 
lec. 2: Mathematics for 3D Games 

lec. 3: Scene Graph 
lec. 4: Game 3D Physics  + 
lec. 5: Game Particle Systems 
lec. 6: Game 3D Models 
lec. 7: Game Textures 
lec. 8: Game 3D Animations 
lec. 9: Game 3D Audio 
lec. 10: Networking for 3D Games
lec. 11: Artificial Intelligence for 3D Games 
lec. 12: Game 3D Rendering Techniques

Let’s continue
the discussion
on the spatial
indexing structures
for collision
detection

kD-trees

the scene

A

A

B C

B C

D

E

D E

F G

F G

I

H H I

K

J

J K

L
M

L MN O

N O

D E F

H

K

M

N O

63

64

3D Video Games
05: Game Physics
Part 6: Collisions

2020-05-04

Marco Tarini
Università degli studi di Milano 2

kD-trees

 Hierarchical structure: a tree
 each node: a subpart of the 3D space
 root: all the world
 child nodes: partitions of the father
 objects linked to leaves

 kD-tree:
 binary tree
 each node: split over one dimension (in 3D: X,Y,Z)
 variant:

 each node optimizes (and stores) which dimension, or
 always same order: e.g. X then Y then Z

 variant:
 each node optimizes the split point, or
 always in the middle

Quad-Tree
(in 2D)

the (2D) world

65

66

3D Video Games
05: Game Physics
Part 6: Collisions

2020-05-04

Marco Tarini
Università degli studi di Milano 3

Oct Tree
(same, for 3D)

Quad trees (in 2D)
Oct trees (in 3D)

 Similar to kD-trees, but:
 tree: branching factor: 4 (in 2D) or 8 (in 3D)
 each node: splits into all dimensions at once,

(in the middle)

 Construction (just as kD-trees):
 continue splitting until a end nodes has few enough

objects
(or limit level reached)

67

68

3D Video Games
05: Game Physics
Part 6: Collisions

2020-05-04

Marco Tarini
Università degli studi di Milano 4

BSP-tree
Binary Spatial Partition tree

the world

BSP-tree
Binary Spatial Partitioning tree

 Another hierarchical spatial structure
 Root = entire scene
 Spatial query = traverse the tree from the top down
 Each internal node: a plane, splitting the associated region in two
 Two child-nodes: one for each side of the tree

 Like a kD-tree but planes are general
 (not axis aligned)
 plane = stored as vec4
 Pro: they can be optimized for optimal queries: best query time!
 Con: they need to be optimized during construction: worse

construction time!
 BSP-trees are also a convenient structure to encode

(concave) polyhedral proxies

69

70

3D Video Games
05: Game Physics
Part 6: Collisions

2020-05-04

Marco Tarini
Università degli studi di Milano 5

BSP-trees for
the Polyhedron proxy (Concave too)

IN

OUT

BSP-trees for
the Polyhedron proxy

F

D

A

OUT B

OUT

OUT

C

IN

D OUT

E

OUT IN

E

C

B

A

in front? behind?

F

71

72

3D Video Games
05: Game Physics
Part 6: Collisions

2020-05-04

Marco Tarini
Università degli studi di Milano 6

BSP-tree
Binary Spatial Partitioning tree

 Another variant
 a binary tree (like the kD-tree)

 root = all scene (like kD-tree)
 but, each node is split by an arbitrary plane

 (or a line, in 2D)
 plane is stored at node, as (nx, ny, nz, k)

 planes can be optimized for a given scene
 e.g. to go for a 50%-50% object split at each node
 e.g. to exactly one object at leaves

 (assuming it is always possible to split any two apart – reasonable assumption)

 Another use: to test (Generic) Polyhedron proxy:
 note: with planes defined in its object space
 each leaf: inside or outside

 (no need to store them: left-child = in, right-child = out)
 tree precomputed for a given Collision Object

BVH
Bounding Volume Hierarchy

73

74

3D Video Games
05: Game Physics
Part 6: Collisions

2020-05-04

Marco Tarini
Università degli studi di Milano 7

BVH –
Bounding Volume Hierarchies

E

F

A
D

C
B

FE

DA CB

BVH –
Bounding Volume Hierarchies

E

F

A
D

C
BG

H

J

K

M
M

J K

FG EH

DA CB

75

76

3D Video Games
05: Game Physics
Part 6: Collisions

2020-05-04

Marco Tarini
Università degli studi di Milano 8

BVH
Bounding Volume Hierarchy

 Idea: use the scene hierarchy given by the scene
graph
 (instead of a spatial derived one)

 associate a Bounding Volumes to each node
 rule: a BV of a node bounds all objects in the subtree

 construction / update: quick! 
 bottom-up: recursive (how?)

 using it:
 top-down: visit (how?)
 note: not a single root to leaf path

 may need to follow multiple children of a node
(in a BSP-tree: only one)

Spatial indexing structures
Recap
 Regular Grid

  the most parallelizable (to update / construct / use)
  constant time access (best!)
  quadratic / cubic RAM space (2D, 3D) – unless hashing

 kD-tree, Oct-tree, Quad-tree
  compact
  simple

 BSP-tree
  optimized splits!  best performance when accessed
  optimized splits! more complex construction / update
 ideal for static parts of the scene?
 (also, used for generic Polyhedral Collider)

 alternative: BVH
  simplest construction
  non necessarily super efficient to access

 may need to traverse multiple children
 if uses same hierarchy of the scene-graph: not always the best

 ideal for dynamic parts of the scene?

77

78

3D Video Games
05: Game Physics
Part 6: Collisions

2020-05-04

Marco Tarini
Università degli studi di Milano 9

Physics Engine:
an implementation problem
 Task: Dynamics:

 (forces, speed and position updates…)
 simple structures, fixed workflow
 highly parallelizable: GPU possible

 Task: Constraints Enforcement:
 still moderately simple structures, fixed workflow
 problem: collision constraints not know a-priori
 still highly parallelizable: hopefully, GPU possible

 Task: Collisions Detection:
 non-trivial data structures, hierarchies, recursive algorithms…
 hugely variable workflow

 (e.g.: quick on no-collision, more work to do when the rare collisions occur)
 difficult to parallelize: CPU
 but outcome affect the other two tasks (e.g. creates constraints):

 ==> CPU-GPU communication, and ==> GPU structures updates
(problematic on many architectures)

Physics: that’s all folks.
To gather more info…

 Erwin Coumans
SIGGRAPH 2015 course
http://bulletphysics.org/wordpress/?p=432

 Müller-Fischer et al.
Real-time physics
(Siggraph course notes, 2008)
http://www.matthiasmueller.info/realtimephysics/

79

80

