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Course Plan 

lec.  1: Introduction  
lec.  2: Mathematics for 3D Games 

lec.  3: Scene Graph 
lec.  4: Game 3D Physics  + 
lec.  5: Game Particle Systems 
lec.  6: Game 3D Models 
lec.  7: Game Textures 
lec.  8: Game 3D Animations 
lec.  9: Game 3D Audio 
lec. 10: Networking for 3D Games
lec. 11: Artificial Intelligence for 3D Games 
lec. 12: Game 3D Rendering Techniques

Let’s continue
the discussion
on the spatial 
indexing structures
for collision 
detection

kD-trees

the scene

A

A

B C

B C

D

E

D E

F G

F G

I

H H I

K

J

J K

L
M

L MN O

N O

D E F

H

K

M

N O

63

64



3D Video Games                                
05: Game Physics                            
Part 6: Collisions

2020-05-04

Marco Tarini                                  
Università degli studi di Milano 2

kD-trees

 Hierarchical structure: a tree
 each node: a subpart of the 3D space
 root: all the world
 child nodes: partitions of the father
 objects linked to leaves

 kD-tree:
 binary tree
 each node: split over one dimension (in 3D: X,Y,Z)
 variant: 

 each node optimizes (and stores) which dimension, or
 always same order: e.g. X then Y then Z

 variant:
 each node optimizes the split point, or
 always in the middle

Quad-Tree 
(in 2D)

the (2D) world
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Oct Tree
(same, for 3D)

Quad trees (in 2D)
Oct trees (in 3D)

 Similar to kD-trees, but:
 tree: branching factor: 4 (in 2D) or 8 (in 3D)
 each node: splits into all dimensions at once,

(in the middle)

 Construction (just as kD-trees):
 continue splitting until a end nodes has few enough 

objects
(or limit level reached)
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BSP-tree 
Binary Spatial Partition tree

the world

BSP-tree 
Binary Spatial Partitioning tree

 Another hierarchical spatial structure
 Root = entire scene
 Spatial query = traverse the tree from the top down
 Each internal node: a plane, splitting the associated region in two 
 Two child-nodes: one for each side of the tree

 Like a kD-tree but planes are general 
 (not axis aligned)
 plane = stored as vec4
 Pro: they can be optimized for optimal queries: best query time!
 Con: they need to be optimized during construction: worse 

construction time!
 BSP-trees are also a convenient structure to encode 

(concave) polyhedral proxies
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BSP-trees for 
the Polyhedron proxy (Concave too)
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BSP-trees for 
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BSP-tree
Binary Spatial Partitioning tree

 Another variant
 a binary tree (like the kD-tree)

 root = all scene (like kD-tree)
 but, each node is split by an arbitrary plane

 (or a line, in 2D)
 plane is stored at node, as (nx, ny, nz, k)

 planes can be optimized for a given scene
 e.g. to go for a 50%-50% object split at each node
 e.g. to exactly one object at leaves

 (assuming it is always possible to split any two apart – reasonable assumption)

 Another use: to test (Generic) Polyhedron proxy:
 note: with planes defined in its object space
 each leaf: inside or outside

 (no need to store them: left-child = in, right-child = out)
 tree precomputed for a given Collision Object

BVH
Bounding Volume Hierarchy
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BVH –
Bounding Volume Hierarchies
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BVH
Bounding Volume Hierarchy

 Idea: use the scene hierarchy given by the scene 
graph
 (instead of a spatial derived one)

 associate a Bounding Volumes to each node
 rule: a BV of a node bounds all objects in the subtree

 construction / update: quick! 
 bottom-up: recursive (how?)

 using it: 
 top-down: visit (how?)
 note: not a single root to leaf path

 may need to follow multiple children of a node
(in a BSP-tree: only one)

Spatial indexing structures
Recap
 Regular Grid

  the most parallelizable (to update / construct / use)
  constant time access (best!)
  quadratic / cubic RAM space (2D, 3D) – unless hashing

 kD-tree, Oct-tree, Quad-tree
  compact
  simple

 BSP-tree
  optimized splits!  best performance when accessed 
  optimized splits! more complex construction / update
 ideal for static parts of the scene? 
 (also, used for generic Polyhedral Collider)

 alternative: BVH
  simplest construction 
  non necessarily super efficient to access

 may need to traverse multiple children
 if uses same hierarchy of the scene-graph: not always the best

 ideal for dynamic parts of the scene?
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Physics Engine:
an implementation problem
 Task: Dynamics: 

 (forces, speed and position updates…)
 simple structures, fixed workflow 
 highly parallelizable: GPU possible

 Task: Constraints Enforcement:
 still moderately simple structures, fixed workflow
 problem: collision constraints not know a-priori
 still highly parallelizable: hopefully, GPU possible

 Task: Collisions Detection:
 non-trivial data structures, hierarchies, recursive algorithms…
 hugely variable workflow 

 (e.g.: quick on no-collision, more work to do when the rare collisions occur)
 difficult to parallelize: CPU
 but outcome affect the other two tasks (e.g. creates constraints):

 ==> CPU-GPU communication, and ==> GPU structures updates
(problematic on many architectures)

Physics: that’s all folks.
To gather more info…

 Erwin Coumans
SIGGRAPH 2015 course
http://bulletphysics.org/wordpress/?p=432

 Müller-Fischer et al.
Real-time physics
(Siggraph course notes, 2008)
http://www.matthiasmueller.info/realtimephysics/
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