
3D Video Games
05: Game Physics - sandbox

2020-04-27

Marco Tarini
Università degli studi di Milano 1

3D video games

Physics sandbox

Marco Tarini

Objective of this sandbox

Implement a simple Verlet based, PBD physics system
on Unity
 Basic idea:

 don’t enable default Unity physics system
 instead, crudely implement phsyics in scripts by hand
 note: in a normal project, there’s no reason to do this!

 How not to enable physics in Unity:
 Just don’t add, to any GameObject,

any “RigidBody” component (implemets dynamics) or
any “Collider” component (implements collision handling)

 we will still use the normal Unity scene-graph support
 GameObjects, and their associated Transforms

126

127

3D Video Games
05: Game Physics - sandbox

2020-04-27

Marco Tarini
Università degli studi di Milano 2

Background: “behaviors” in Unity

 In Unity, a behavior is a script associated
to Game objects

 It is a C# class, with predefined methods used by the
resto of the engine:
 Start() – called at scene construction
 FixedUpdate() – called for each fixed step
 Update() – called before rendering this object

(that is, at each rendering step)

 The value dt is exposed as Time.FixedDeltaTime

For details on methods used in this sandbox,
refer to the implementation on the website!

Particles and Particle behavior

 Our particle is a game object
 rendered as a small sphere

 Its associated behavior includes the fields:
 pos, prevPos (points): for Verlet dynamics

(pos is the current position)
 mass, drag (scalars): constants (exposed to the interface)

 and the methods:
 Start(): initializes Verlet
 FixedUpdate(): performs a Verlet integration step

128

129

3D Video Games
05: Game Physics - sandbox

2020-04-27

Marco Tarini
Università degli studi di Milano 3

Implementation detail:
pos VS transform.position
 For each particle, the current positions is stored twice:

 The position according to our custom physics engine:
pos – a custom field in the “behavior” of the particle

 rendering position: the position used by the rendering engine
transform.position, i.e. the position Unity uses for everything

 We keep them separated, just for code clarity
 At the beginning (start method)

 physic position ← rendering position
(so that the objects starts where we placed them in the GUI)

 Before each rendering (update method)
 rendering position ← physic position

(so that the object is rendered where the physics moved it)

Fixed-update of particles

 Basic Verlet integration
 Includes velocity dumping
 see dump computation

 Includes addition of forces
which depend only on this one particle
 Such as gravity

 Includes enforcement of positional constraints
which depend only on this one particle
 Such as ground collision (“please stay above ground”)

130

131

3D Video Games
05: Game Physics - sandbox

2020-04-27

Marco Tarini
Università degli studi di Milano 4

Adding positional constraint:
stay “fixed”

 A Particle can simply “be asked” to stay fixed
 Implementation notes:
 Added a Boolean field isFixed
 Added the Vector3 field fixedPos , the pos where this

particle is fixed in the scene (copied on Start)
 Trivially imposed the constraint in the FixedUpdate()

 Small hack:
 fixedPos is also updated at every frame,

as the current rendering position
 (so that we can move this particle from the GUI)

Adding rods

 Rods are GameObjects representing rigid rods
connecting two particles

 Rendering:
 A rod is rendered as a small cylinder

(a cylinder mesh associated to the Game Object)
 Before each rendering (update method)

a transformation is computed so that the cylinder is scaled
(on Y only), rotated, and translated
to make it graphically connect the two particles

 (therefore, it doesn't matter where we place them in the
scene: they will teleport to the right location at each frame)

132

133

3D Video Games
05: Game Physics - sandbox

2020-04-27

Marco Tarini
Università degli studi di Milano 5

Rod behavior

 Fields:
 Connected particles A and B

It’s public: set them in the Unity GUI !
 Rest length (computed on Start as the initial distance

between particles A and B)

 Methods:
 FixedUpdate: enforce the positional constraints, acting on

the position of the two particles
 Note: this take in account correctly of their mass

Sand box: results.

 Combining multiple particles and rods,
we can construct meta-objects such as…
 Ropes (a multiple-joint pendulum)
 Rigid objects
 Other articulated objects (todo!)

 For convenience, the sub-tree of the scene-graph
making a meta-object can be stored as Prefabs (assets)

 Observe: rigid objects behave correctly, with plausible…
 Effect of impact with the ground
 Angular velocity
 Angular momentum
 Barycenter (try assigning a different mass to a rigid object hanged on a

rope with an fixed end)

134

135

3D Video Games
05: Game Physics - sandbox

2020-04-27

Marco Tarini
Università degli studi di Milano 6

Sandbox: bonus results (overtime).
A disclaimer.

 From this point on, the sandbox is not part of the
official lectures of this course

 This is merely an occasion to have fun together
using the conceptual tools seen at lectures

 No new topic that is relevant for the course
is introduced from this point on
 Any new topic encountered are not asked at exams

Rigid objects rendered as 3D models

 So far, a rigid object is just a subtree of the scene composed of
many particles and rods
 Note: they are not Unity “rigid objects”, but they act similarly

 Next step:
we want to associate any custom 3D model to this object,
 We want to render our rigid bodies as any single model,

not as a collection of “balls and sticks”
 For now, we will use just cubes as the models

 Basic idea: the “rigid body” meta-object is a two-level subtree
 Children are:

rods & particles,
and the associated 3D model

136

137

3D Video Games
05: Game Physics - sandbox

2020-04-27

Marco Tarini
Università degli studi di Milano 7

Scene graph interpretation

World

Our
Rigid

Object

T

T0 Tn

point particles

Tobject

Local transformation
of the rigid body.

It does not really matter.
It could be set as the identity.

Local transform,
but also global.

Task:
update this,
according to T0 … Tn

any 3D model
(for now, a cube)

How to update the transform of the 3D model
(i.e. how to make the mesh “follow the particles”)

 Step 1: extract translation (position)
and rotation (orientation) from particles positions
 Assuming the object is rigid, any 3 particles PA PB PC

can be used (as long as the are not colinear)
 We choose three random particles.
 Position: the position of the barycenter

(arbitrary choice – does not matter, we could use just PA)
 Orientation: find the rotation matrix as three axes

(see code), or use LookAt method – also arbitrary

 Step 2: at Start, find current “delta transform” (initial transform)
 So that Tobject will be, at the beginning, the one we set in the GUI

 Step 3: before any rendering (method update), compue
 Tobject as current transform * inverse(initial transform)

138

139

3D Video Games
05: Game Physics - sandbox

2020-04-27

Marco Tarini
Università degli studi di Milano 8

How to update the transform of the 3D model
(i.e. how to make the mesh “follow the particles”)

 Notes:
 All computations happen in local space of the “my rigid

body” node
 Therefore we need to update the local Transform of the

3D model GameObject (i.e. its localRotation, localPosition…)

 About the bug which we had to fix:
 We erroneously update its global rotation instead
 In theory, it would have made no difference, if transform T

was the identity (T = local transform of the rigid body)

Future work:
Idea for how to progress 1/4

 Current problem:
 Each positional constraint is enforced only once per frame

 Fix it: make a global “behavior”
 Associated to the root of the scene
 instead of relying on Unity to execute fixed updates of

every object, use only the fixed update of the global
behavior, making a sequence of loops:
 1st loop: execute Verlet integration (loop over all particles)
 2nd loop: enforce all positional constraints

(loop over all particle and over all rods in the scene)
 Repeat 2nd loop multiple times

140

141

3D Video Games
05: Game Physics - sandbox

2020-04-27

Marco Tarini
Università degli studi di Milano 9

Future work:
Idea for how to progress: 2/4

 Add springs
 How to: add spring object (similar to rods)

 1. Rest length: computed at start (like for rods)
 2. Particles at the extremes: a public field, just as for rods
 3. Elasitic constant k: a (public) scalar parameters
 4. Write fixed update(): add to forces of the two particles
 5. Profit! Add spring to your compound meta-objects

 Caveats:
 Unless you use a global script, you will need to

set forces to 0 (InitForces method) at the end of the
FixedUpdate (not the beginning) and at initialization (why?)

Future work:
Idea for how to progress: 3/4
 Floor is lava (or water)

 Instead of having a hard-granite floor, make it liquid

 How to:
 1. Remove the “stay above ground” constraint
 2. Add buoyancy (ita: forza di Archimede) to the particles

 (as an approximation, you don’t need it for the rods or the
rigid objects: just the particles)

 Reminder: buoyancy is an upward force with a magnitude = mass of
the submerged volume if it was made of water

 Math task: compute the volume of the part of sphere (of a given
radius) which has y > 0

 3. Profit! See how object float, or sink
 (and which parts stays up if they float) – depends on masses are size

142

143

3D Video Games
05: Game Physics - sandbox

2020-04-27

Marco Tarini
Università degli studi di Milano 10

Future work:
Idea for how to progress: 4/4
 Extract emerging behavior of the meta object
 The meta object has its own…:

 1. Baricenter (done! – function currentBaricenter)
 2. Linear velocity (done! – function averageVelocity)
 3. Total mass
 4. Angular velocity
 5. Moment of inertia

 They are all implicitly updated (emerging behaviour)
 Can we make them explicit, extracting them?

Example: how to extract…

Particle Compound Rigid Body

p0

p1
p2

p3

masses m0…m3
initial positions r0…r3

positions p0…p3
velocities v0…v3

mass m
barycenter b
moment of inertia I (matrix)

position p (of barycenter)
velocity v
rotation (i.e. orientation) R
angular velocity a

?

ST
AT

IC
DY

N
AM

IC

ST
AT

IC
DY

N
AM

IC?

?

144

145

