
3D Video Games
05: Game Physics - sandbox

2020-04-27

Marco Tarini
Università degli studi di Milano 1

3D video games

Physics sandbox

Marco Tarini

Objective of this sandbox

Implement a simple Verlet based, PBD physics system
on Unity
 Basic idea:

 don’t enable default Unity physics system
 instead, crudely implement phsyics in scripts by hand
 note: in a normal project, there’s no reason to do this!

 How not to enable physics in Unity:
 Just don’t add, to any GameObject,

any “RigidBody” component (implemets dynamics) or
any “Collider” component (implements collision handling)

 we will still use the normal Unity scene-graph support
 GameObjects, and their associated Transforms

126

127

3D Video Games
05: Game Physics - sandbox

2020-04-27

Marco Tarini
Università degli studi di Milano 2

Background: “behaviors” in Unity

 In Unity, a behavior is a script associated
to Game objects

 It is a C# class, with predefined methods used by the
resto of the engine:
 Start() – called at scene construction
 FixedUpdate() – called for each fixed step
 Update() – called before rendering this object

(that is, at each rendering step)

 The value dt is exposed as Time.FixedDeltaTime

For details on methods used in this sandbox,
refer to the implementation on the website!

Particles and Particle behavior

 Our particle is a game object
 rendered as a small sphere

 Its associated behavior includes the fields:
 pos, prevPos (points): for Verlet dynamics

(pos is the current position)
 mass, drag (scalars): constants (exposed to the interface)

 and the methods:
 Start(): initializes Verlet
 FixedUpdate(): performs a Verlet integration step

128

129

3D Video Games
05: Game Physics - sandbox

2020-04-27

Marco Tarini
Università degli studi di Milano 3

Implementation detail:
pos VS transform.position
 For each particle, the current positions is stored twice:

 The position according to our custom physics engine:
pos – a custom field in the “behavior” of the particle

 rendering position: the position used by the rendering engine
transform.position, i.e. the position Unity uses for everything

 We keep them separated, just for code clarity
 At the beginning (start method)

 physic position ← rendering position
(so that the objects starts where we placed them in the GUI)

 Before each rendering (update method)
 rendering position ← physic position

(so that the object is rendered where the physics moved it)

Fixed-update of particles

 Basic Verlet integration
 Includes velocity dumping
 see dump computation

 Includes addition of forces
which depend only on this one particle
 Such as gravity

 Includes enforcement of positional constraints
which depend only on this one particle
 Such as ground collision (“please stay above ground”)

130

131

3D Video Games
05: Game Physics - sandbox

2020-04-27

Marco Tarini
Università degli studi di Milano 4

Adding positional constraint:
stay “fixed”

 A Particle can simply “be asked” to stay fixed
 Implementation notes:
 Added a Boolean field isFixed
 Added the Vector3 field fixedPos , the pos where this

particle is fixed in the scene (copied on Start)
 Trivially imposed the constraint in the FixedUpdate()

 Small hack:
 fixedPos is also updated at every frame,

as the current rendering position
 (so that we can move this particle from the GUI)

Adding rods

 Rods are GameObjects representing rigid rods
connecting two particles

 Rendering:
 A rod is rendered as a small cylinder

(a cylinder mesh associated to the Game Object)
 Before each rendering (update method)

a transformation is computed so that the cylinder is scaled
(on Y only), rotated, and translated
to make it graphically connect the two particles

 (therefore, it doesn't matter where we place them in the
scene: they will teleport to the right location at each frame)

132

133

3D Video Games
05: Game Physics - sandbox

2020-04-27

Marco Tarini
Università degli studi di Milano 5

Rod behavior

 Fields:
 Connected particles A and B

It’s public: set them in the Unity GUI !
 Rest length (computed on Start as the initial distance

between particles A and B)

 Methods:
 FixedUpdate: enforce the positional constraints, acting on

the position of the two particles
 Note: this take in account correctly of their mass

Sand box: results.

 Combining multiple particles and rods,
we can construct meta-objects such as…
 Ropes (a multiple-joint pendulum)
 Rigid objects
 Other articulated objects (todo!)

 For convenience, the sub-tree of the scene-graph
making a meta-object can be stored as Prefabs (assets)

 Observe: rigid objects behave correctly, with plausible…
 Effect of impact with the ground
 Angular velocity
 Angular momentum
 Barycenter (try assigning a different mass to a rigid object hanged on a

rope with an fixed end)

134

135

3D Video Games
05: Game Physics - sandbox

2020-04-27

Marco Tarini
Università degli studi di Milano 6

Sandbox: bonus results (overtime).
A disclaimer.

 From this point on, the sandbox is not part of the
official lectures of this course

 This is merely an occasion to have fun together
using the conceptual tools seen at lectures

 No new topic that is relevant for the course
is introduced from this point on
 Any new topic encountered are not asked at exams

Rigid objects rendered as 3D models

 So far, a rigid object is just a subtree of the scene composed of
many particles and rods
 Note: they are not Unity “rigid objects”, but they act similarly

 Next step:
we want to associate any custom 3D model to this object,
 We want to render our rigid bodies as any single model,

not as a collection of “balls and sticks”
 For now, we will use just cubes as the models

 Basic idea: the “rigid body” meta-object is a two-level subtree
 Children are:

rods & particles,
and the associated 3D model

136

137

3D Video Games
05: Game Physics - sandbox

2020-04-27

Marco Tarini
Università degli studi di Milano 7

Scene graph interpretation

World

Our
Rigid

Object

T

T0 Tn

point particles

Tobject

Local transformation
of the rigid body.

It does not really matter.
It could be set as the identity.

Local transform,
but also global.

Task:
update this,
according to T0 … Tn

any 3D model
(for now, a cube)

How to update the transform of the 3D model
(i.e. how to make the mesh “follow the particles”)

 Step 1: extract translation (position)
and rotation (orientation) from particles positions
 Assuming the object is rigid, any 3 particles PA PB PC

can be used (as long as the are not colinear)
 We choose three random particles.
 Position: the position of the barycenter

(arbitrary choice – does not matter, we could use just PA)
 Orientation: find the rotation matrix as three axes

(see code), or use LookAt method – also arbitrary

 Step 2: at Start, find current “delta transform” (initial transform)
 So that Tobject will be, at the beginning, the one we set in the GUI

 Step 3: before any rendering (method update), compue
 Tobject as current transform * inverse(initial transform)

138

139

3D Video Games
05: Game Physics - sandbox

2020-04-27

Marco Tarini
Università degli studi di Milano 8

How to update the transform of the 3D model
(i.e. how to make the mesh “follow the particles”)

 Notes:
 All computations happen in local space of the “my rigid

body” node
 Therefore we need to update the local Transform of the

3D model GameObject (i.e. its localRotation, localPosition…)

 About the bug which we had to fix:
 We erroneously update its global rotation instead
 In theory, it would have made no difference, if transform T

was the identity (T = local transform of the rigid body)

Future work:
Idea for how to progress 1/4

 Current problem:
 Each positional constraint is enforced only once per frame

 Fix it: make a global “behavior”
 Associated to the root of the scene
 instead of relying on Unity to execute fixed updates of

every object, use only the fixed update of the global
behavior, making a sequence of loops:
 1st loop: execute Verlet integration (loop over all particles)
 2nd loop: enforce all positional constraints

(loop over all particle and over all rods in the scene)
 Repeat 2nd loop multiple times

140

141

3D Video Games
05: Game Physics - sandbox

2020-04-27

Marco Tarini
Università degli studi di Milano 9

Future work:
Idea for how to progress: 2/4

 Add springs
 How to: add spring object (similar to rods)

 1. Rest length: computed at start (like for rods)
 2. Particles at the extremes: a public field, just as for rods
 3. Elasitic constant k: a (public) scalar parameters
 4. Write fixed update(): add to forces of the two particles
 5. Profit! Add spring to your compound meta-objects

 Caveats:
 Unless you use a global script, you will need to

set forces to 0 (InitForces method) at the end of the
FixedUpdate (not the beginning) and at initialization (why?)

Future work:
Idea for how to progress: 3/4
 Floor is lava (or water)

 Instead of having a hard-granite floor, make it liquid

 How to:
 1. Remove the “stay above ground” constraint
 2. Add buoyancy (ita: forza di Archimede) to the particles

 (as an approximation, you don’t need it for the rods or the
rigid objects: just the particles)

 Reminder: buoyancy is an upward force with a magnitude = mass of
the submerged volume if it was made of water

 Math task: compute the volume of the part of sphere (of a given
radius) which has y > 0

 3. Profit! See how object float, or sink
 (and which parts stays up if they float) – depends on masses are size

142

143

3D Video Games
05: Game Physics - sandbox

2020-04-27

Marco Tarini
Università degli studi di Milano 10

Future work:
Idea for how to progress: 4/4
 Extract emerging behavior of the meta object
 The meta object has its own…:

 1. Baricenter (done! – function currentBaricenter)
 2. Linear velocity (done! – function averageVelocity)
 3. Total mass
 4. Angular velocity
 5. Moment of inertia

 They are all implicitly updated (emerging behaviour)
 Can we make them explicit, extracting them?

Example: how to extract…

Particle Compound Rigid Body

p0

p1
p2

p3

masses m0…m3
initial positions r0…r3

positions p0…p3
velocities v0…v3

mass m
barycenter b
moment of inertia I (matrix)

position p (of barycenter)
velocity v
rotation (i.e. orientation) R
angular velocity a

?

ST
AT

IC
DY

N
AM

IC

ST
AT

IC
DY

N
AM

IC?

?

144

145

