

How to represent a mesh?
(which data structures)

• Indexed mode in C++:

class Vertex {
 vec3 pos;
 rgb color; /* attribute 1 */
 vec3 normal; /* attribute 2 */
 };

class Face{
 int vertexIndex[3];
 };

class Mesh{
 vector<Vertex> verts; /* geom + attr */
 vector<Face> faces; /* connectivity */
 };

- The algorithm above (for the computation of per vertex normal) is a tiny example of processing done over a mesh
- Mesh processing: the discipline of creating, transforming, computing meshes
 - inputs and/or outputs are meshes
- Part of, geometry processing:
 - when the input and output are other data structure for 3D models
 - See CG course for a very brief overview

57

