
3D Video Games
07: Meshes in Games
Part 1/2

2020-05-07

Marco Tarini
Università degli studi di Milano 1

3D video games

Models for Games

Marco Tarini

Course Plan

lec. 1: Introduction
lec. 2: Mathematics for 3D Games

lec. 3: Scene Graph
lec. 4: Game 3D Physics +
lec. 5: Game Particle Systems
lec. 6: Game 3D Models
lec. 7: Game Textures
lec. 8: Game 3D Animations
lec. 9: Game 3D Audio
lec. 10: Networking for 3D Games
lec. 11: Artificial Intelligence for 3D Games
lec. 12: Game 3D Rendering Techniques

1

2

3D Video Games
07: Meshes in Games
Part 1/2

2020-05-07

Marco Tarini
Università degli studi di Milano 2

Metal Slug (1996, Nazca Copr), on Neo Geo (SNK)

Solomons’s key
(1986, Temco)
on Z80

reminder:
during the ’80s – early ‘90s,
the principal asset in games
consisted in
sprites / tilemaps authored
by pixel artists ...

Triangle Meshes
The visual appearance of 3D objects

 Data structure for modelling 3D objects
 GPU friendly
 Resolution = number of faces
 (Potentially) Adaptive resolution

 Used in games to represent the visual appearance
of 3D objects
 at least, the ones which can be represented by their surface
 most solid objects (rigid or not)

 Mathematically: a piecewise linear surface
 a bunch of surface samples “vertices”

connected by a set of triangular “faces”
attached side to side by “edges”

3

4

3D Video Games
07: Meshes in Games
Part 1/2

2020-05-07

Marco Tarini
Università degli studi di Milano 3

Triangle Mesh
(or simplicial mesh)

 A set of adjacent triangles
faces

vertices

edges

Mesh:
data structure
A mesh is made of
 geometry
 The vertices, each with pos (x,y,z)
 It’s a sampling of the surface

 connectivity or topology
 Faces connecting the vertices

 Triangle mesh: faces are triangles
(what the GPU is designed to render!)

 (pure) quad mesh: faces are quadrilateral
 Quad dominant mesh: most faces are quadrilateral
 Polygonal mesh: faces are polygons (general case)

 attributes
 Ex.: color, material, normal, UV, …

5

6

3D Video Games
07: Meshes in Games
Part 1/2

2020-05-07

Marco Tarini
Università degli studi di Milano 4

Mesh: geometry

 Set of vertices
 A position vector (x,y,z) for every vertex
 Coordinates, by definition, are given in Local space!

V2

V3

V5

V4

V1

Mesh: connectivity (or topology)

 Faces: triangles connecting vertices
 More in general, polygons,
 connecting triplet of vertices
 just as, in a graph, nodes are connected by edges

V2

V3

V5

V4

V1

T1

T2

T3

7

8

3D Video Games
07: Meshes in Games
Part 1/2

2020-05-07

Marco Tarini
Università degli studi di Milano 5

Mesh: attributes

 Any quantity that varies over the surface
 sampled at vertices, and interpolated inside triangles

V2

V3

V5

V4

V1

T1

T2

T3

RGB3

RGB2

RGB5

RGB4

RGB1

Mesh as a data structure:
soup of triangles

 Simply, an array of triangles
 Each triangle stored as: sequence of 3 vertices
 Each vertex stored as:

x,y,z coordinates + attributes
 Problem: data replication
 Not very memory efficient
 Inconvenient to update

(e.g. to animate)
 Not very used

most faces are adjacent
to each other
(adjacent faces share
the same vertices)

9

10

3D Video Games
07: Meshes in Games
Part 1/2

2020-05-07

Marco Tarini
Università degli studi di Milano 6

Mesh as a data strucuture:
indexed meshes

 array of vertices
 Each vertex stored as

 x,y,z position (aka the “geometry” of the mesh)
 attributes: (all vertices, the same ones)

any data saved on the surface: e.g. color

 array of triangles
 the “connectivity» (or, “topology”) of the mesh

 Each triangle stored as
 triplet of indices (referring to a vertex in the array)

 The two arrays can be seen as tables

we can consider
positions as

attributes too

An indexed mesh in GPU ram =
two buffers

V2

V3

V5

V4

V1

T1

T2

T3

Tri:
Wedge

1:
Wedge

2:
Wedge

3:

T1 V4 V1 V2

T2 V4 V2 V5

T3 V5 V2 V3

vert X Y Z R G B

V1 x1 y1 z1 r1 g1 b1

V2 x2 y2 z2 r2 g2 b2

V3 x3 y3 z3 r3 g3 b3

V4 x4 y4 z4 r4 g4 b4

V5 x5 y5 z5 r5 g5 b5

GEOMETRY + ATTRIBUTES

CONNECTIVITY

11

12

3D Video Games
07: Meshes in Games
Part 1/2

2020-05-07

Marco Tarini
Università degli studi di Milano 7

Mesh resolution

 Defined as the number of faces
 or vertices, equivalent because typically #F ≈ 2 ∙ #V)

 Rendering time is linear with resolution
 therefore, in games, resolution is kept small
 aka. «low-poly» models

 Resolution can be adaptive:
 denser vertices & smaller faces in certain parts
 sparser vertices & larger faces in other parts

 Resolution of typical models increases with time
 e.g. 1990s: 105 △ is hi-res
 2000s: 1010 △ is hi-res

In games: “Low-Poly” models
(low resolution meshes)

13

14

3D Video Games
07: Meshes in Games
Part 1/2

2020-05-07

Marco Tarini
Università degli studi di Milano 8

by Phillip Heckinger (3D modeller)

Low-poly models

Resolution increases over time

800 △ Unreal Tournament
(1999)

16

17

3D Video Games
07: Meshes in Games
Part 1/2

2020-05-07

Marco Tarini
Università degli studi di Milano 9

Resolution increases over time

800 △ Unreal Tournament
(1999)

Unreal Tournament 2K3
(2002)

3000 △

Resolution increases over time

800 △ Unreal Tournement
(1999)

Unreal Tounement 2K3
(2002)

3000 △

Unreal Tournament 3
(2007)

4,500 △
weapon this

12,000 △

18

19

3D Video Games
07: Meshes in Games
Part 1/2

2020-05-07

Marco Tarini
Università degli studi di Milano 10

800 △
(1999)

3000 △
(2002)

15000 △
(2006)

Resolution increases over time

230 △
(1996)

300 △
(1998)

30.000 △
(2008)

48.000 △
(2012)

4.000 △
(2002)

20

21

3D Video Games
07: Meshes in Games
Part 1/2

2020-05-07

Marco Tarini
Università degli studi di Milano 11

Mesh attributes: in general
(valid for all attributes)

 Any properties stored on the mesh,
varying on the surface
 Can be made of vectors, versors, or scalars

 Stored at each vertex
 Each vertex of a mesh = same collection of attributes

 It’s interpolated inside the faces
 Linear interpolation:

uses barycentric coordinates
 Note: by construction, in indexed meshes

attributes are C0 continuous across faces
 but C1 discontinuous across faces
 and C∞ inside faces

 Position
(aka the “geometry” of the mesh)

 Normal

 Texture Coordinates
(aka the “UV-mapping” of the mesh)

 Tangent Direction

 Bone links
(aka the “skinning” of the mesh)

 Color

Which mesh attributes
are used (in games): a summary

see lecture on
animations

(later)

see lecture on
textures
(later)

see lecture on
normal maps

(later)

in
local

space!

22

23

3D Video Games
07: Meshes in Games
Part 1/2

2020-05-07

Marco Tarini
Università degli studi di Milano 12

Which mesh attributes
are used (in games): a summary

 Normal
 used for dynamic re-lighting

 Texture coordinates
 aka the “uv-mapping” of the mesh
 used for texture mapping

 Tangent direction
 used for normal mapping
 used for anisotropic lighting effects

 Bone links
 aka the “skinning” of the mesh
 used for skeletal animation

 Color
 used for baked lighting (e.g. ambient occlusion)
 used for «base» («diffuse») color (RGB)

SEE TEXTURES LATER

SEE TEXTURES LATER

SEE ANIMATIONS LATER

SEE RENDERING LATER

SEE RENDERING LATER

SEE RENDERING LATER

Mesh as tables

 Position
 Normal
 Color
 Texture Coordinate
 Tangent Direction
 Bone links

Tri: W1: W2: W3:

T0

T1

T2

T3

T4

T5

T6

T7

vert X Y Z Nx Ny Nz R G B A U V Tx Ty Tz Bx By Bz

V0

V1

V2

V3

V4

GEOMETRY + ATTRIBUTES

CONNECTIVITY

24

25

3D Video Games
07: Meshes in Games
Part 1/2

2020-05-07

Marco Tarini
Università degli studi di Milano 13

Mesh attributes: colors

 In games, colors on 3D models are usually
determined by textures (not by mesh colors)
 reason: more resolution in signal

 Per vertex colors can be used…
 To cheaply add variations models

 Red guards, blue guards

 To bake lighting
 e.g. baked per-vertex ambient occlusion see rendering later

 To dynamically recolor mesh parts
 e.g. redden the tip of a sword which is blood soaked
 e.g. accumulate dirty

SEE RENDERING LATER

Mesh attributes: normals

 A versor
 Representing the surface orientation
 Main use: lighting computation
 Can be computed

automatically from
geometry...

 But it is a part of
the mesh assets:
 the artist is in control of

which edges are soft
and which are hard

26

27

3D Video Games
07: Meshes in Games
Part 1/2

2020-05-07

Marco Tarini
Università degli studi di Milano 14

Hard edges
(aka “creases”)

 Edges where the normal is not continuous .

 How to encode (C0) a discontinuity in the attributes?

Soft edge:

Red edges
are hard

answer:

Vertex seams

 Vertex seam = two coincident vertices in xyz
 (different attributes assigned to each copy)

a literal
“seam”

28

29

3D Video Games
07: Meshes in Games
Part 1/2

2020-05-07

Marco Tarini
Università degli studi di Milano 15

Vertex seams
 A way to encode any

attribute discontinuity
 Price to be paid:

a bit of data replication…

Tri: Wedge 1: Wedge 2: Wedge 3:

T0 0 1 4

T1 4 2 0

T2 5 3 6

X Y Z Nx Ny Nz

V0 𝑝𝑥𝟎 𝑝𝑦𝟎 𝑝𝑧𝟎 𝑛𝑥𝟎 𝑛𝑦𝟎 𝑛𝑧𝟎

V1 𝑝𝑥𝟏 𝑝𝑦𝟏 𝑝𝑧𝟏 𝑛𝑥𝟏 𝑛𝑦𝟏 𝑛𝑧𝟏

V2 𝑝𝑥𝟐 𝑝𝑦𝟐 𝑝𝑧𝟐 𝑛𝑥𝟐 𝑛𝑦𝟐 𝑛𝑧𝟐

V3 𝑝𝑥𝟐 𝑝𝑦𝟐 𝑝𝑧𝟐 𝑛𝑥𝟑 𝑛𝑦𝟑 𝑛𝑧𝟑

V4 𝑝𝑥𝟑 𝑝𝑦𝟑 𝑝𝑧𝟑 𝑛𝑥𝟒 𝑛𝑦𝟒 𝑛𝑧𝟒

V5 𝑝𝑥𝟑 𝑝𝑦𝟑 𝑝𝑧𝟑 𝑛𝑥𝟓 𝑛𝑦𝟓 𝑛𝑧𝟓

V6 𝑝𝑥𝟒 𝑝𝑦𝟒 𝑝𝑧𝟒 𝑛𝑥𝟔 𝑛𝑦𝟔 𝑛𝑧𝟔

GEOMETRY + ATTRIBUTES CONNECTIVITY

V1

V6 V2V3

V4V5

V0

Vertex
duplication

Vertex
duplication

Rendering of a Mesh
in a nutshell

 Load…
 put required data on GPU RAM

 Geometry + Attributes
 Connectivity
 Textures
 Shaders
 Parameters / Settings

 …and Fire!
 send the command: “do it” to the GPU
 (using an API)!

THE MESH

THE “MATERIAL”

30

31

3D Video Games
07: Meshes in Games
Part 1/2

2020-05-07

Marco Tarini
Università degli studi di Milano 16

Simplified architecture of PC with Video Card

32

BUS

CPU

ALU

(main)

RAM

Disk

Video Card

…Internal bus
(of video card)

RAM
(GPU)

GPU

Rendering of a Mesh
in a nutshell

 The algorithm to render a mesh (in games)
is based on rasterization
 It is outside the scope of this course. See CG course.
 In brief three phases in cascade:

each vertex is projected on screen (“transform”),
(find where the vertex will be seen on the screen)

then each triangle is rasterized (converted into pixels)
then each pixel is processed (find the final color)

 For our purposes, rendering a mesh means just:
load all required data on the card on the GPU and
send the command to render it (the “draw call”)
 data includes the mesh itself (the two tables)
 plus the current transformations (from local space to view space)
 plus data describing the view: the “material”, including textures

Might change in
the future?

PER PIXEL PHASE

PER TRIANGLE PHASE

PER VERTEX PHASE

32

33

3D Video Games
07: Meshes in Games
Part 1/2

2020-05-07

Marco Tarini
Università degli studi di Milano 17

Rendering of a Mesh
in a nutshell
 A few things to know:

 It is a strongly parallel task
(all vertices, all triangles, all pixels can be processed in parallel)

 The entire procedure is implemented in the GPU
 It’s order-independent: we can draw mesh in any order we like.

The final result is the same
 Time cost:

O(number of vertices) = O(number of faces)
but also, O(number of covered pixels) --- so the slowest of the two

 The rendering procedure includes: animations (see later), lighting
 Because it’s GPU-implemented GPU, many things are hard-wired

 The data structures for the mesh are (indexed meshes or triangle soup)
 Only triangles as supported for faces
 Attributes are automatically interpolated inside face

 There’s a bit of customizability because GPU can be programmed
 Both the per-vertex phase (projection) and the per-pixel phase (lighting)
 “Shader” = custom program

Exception:
semi-transparent

“see through”
objects

Rendering order
of the meshes

T0 T2

T3 T4 T5 T6 T3 T4 T5 T6

Idea 1: depth-first
visit of the
scene graph

world

34

35

3D Video Games
07: Meshes in Games
Part 1/2

2020-05-07

Marco Tarini
Università degli studi di Milano 18

Rendering order
of the meshes (and particle effects too)

 Idea 1: depth-first visit of the scene graph
 Advantage: incremental update of the global transform (used by rendering)
 Cumulate local transform when going down,

popping or cumulate inverse when going back up
 Not a big advantage, after all – popular in CG, not much used in games

 Idea 2: render meshes according to the material they use – load a
material: render all meshes using the same material
 In the example above: render all 8 wheels consecutively
 Advantage: minimize swapping into memory
 Remember: all data needed by the rendering must be residing in GPU ram

must sit together
 Big advantage – much more used

 Idea 3: sort meshes front-to-back (Z order in camera space)
 Render meshes from the back
 Correct order of semitransparent objects
 Problem: expensive to sort – not much used
 Instead, the correct order of semi-trasnsparent objects tweaked with tricks

Called
painter algorithm

Mesh
GPU

Object

LOAD

Life of a Mesh
in a Game Engine

DISK CENTRAL RAM GPU RAM

PREPROCESS
(maybe)

Mesh
Object

IMPORT

Mesh
File

36

37

3D Video Games
07: Meshes in Games
Part 1/2

2020-05-07

Marco Tarini
Università degli studi di Milano 19

Life of a mesh in a game engine

 Import (from disk)
 Optionally, simple Pre-processing
 e.g.: Compute Normals (if needed, i.e. rarely)
 e.g.: Compute Tangent Dirs
 e.g.: Bake Lighting (sometimes)

 Render (each frame)
 GPU based
 Meaning: mesh be loaded in GPU-ram first

Mesh
File
Mesh
File
Mesh
File
Mesh
File
Mesh
File
Mesh
File
Mesh
File

Mesh
GPU

Object

Memory Management
(during game execution)

DISK CENTRAL RAM GPU RAM

Mesh
Object

Mesh
File

Mesh
GPU

Object

Mesh
Object

Mesh
File

Mesh
GPU

Object

Mesh
Object

Mesh
File
Mesh
File
Mesh
File
Mesh
File
Mesh
File

Mesh
Object

Mesh
Object

Mesh
Object

Mesh
Object

Mesh
Object

38

39

3D Video Games
07: Meshes in Games
Part 1/2

2020-05-07

Marco Tarini
Università degli studi di Milano 20

Mesh GPU Object
(on Graphic Card)

 Buffers storing the mesh
 GPU APIs call them: Vertex Buffer Object or Vertex Arrays

 They are stored in GPU RAM
 The scarcest one !

 Ready to render!
 Choices for a Game Engine:
 storage formats, including precisions
 trade-off between storage cost / accuracy
 e.g.

 color? 8 bit per channel
 position? 16 bit per coordinate

Mesh
GPU

Object

LOAD

Life of a Mesh
in a Game Engine

DISK CENTRAL RAM GPU RAM

PREPROCESS
(maybe)

Mesh
Object

IMPORT

Mesh
File

40

41

3D Video Games
07: Meshes in Games
Part 1/2

2020-05-07

Marco Tarini
Università degli studi di Milano 21

Mesh
as an asset

 A file of a given format
sitting on the disk

 Choices for the game engine:
 which formats(s) to import?

 proprietary, standard…
 storing which attributes?

 Issues:
 storage cost
 loading time

LetterL.off

Example of file format for indexed
meshes: OFF format

1 5 1
0 5 1
4 3 2 1 0
4 5 4 3 0
4 6 7 8 9
4 6 9 10 11
4 0 1 7 6
4 1 2 8 7
4 2 3 9 8
4 3 4 10 9
4 4 5 11 10
4 5 0 6 11

OFF
12 10 40
0 0 0
3 0 0
3 1 0
1 1 0
1 5 0
0 5 0
0 0 1
3 0 1
3 1 1
1 1 1

vertices

faces # edges

x,y,z
2nd
vertex

1st face:
4 vertices:
with indices
3, 2, 1 and 0

index 0

index 3

index 2
index 1

42

43

3D Video Games
07: Meshes in Games
Part 1/2

2020-05-07

Marco Tarini
Università degli studi di Milano 22

File formats for meshes
(a Babel tower!)

 3DS - 3D Studio Max file format

 OBJ - Another file format for 3D objects

MA, MB - Maya file formats

 3DX - Rinoceros file format

 BLEND - Blender file format

 DAE - COLLADA file format (Khornos)

 FBX - Autodesk interchange file format

 X - Direct X object

 SMD - good for animations (by Valve)

MD3 - quake 3 vertex animations

 DEM - Digital Elevation Models

 DXF - (exchange format, Autodesk's AutoCAD)

 FIG - Used by REND386/AVRIL

 FLT - MulitGen Inc.'s OpenFlight format

 HDF - Hierarchical Data Format

 IGES - Initial Graphics Exchange Specification

 IV - Open Inventor File Format Info

 LWO, LWB & LWS - Lightwave 3D file formats

MAZ - Used by Division's dVS/dVISE

MGF - Materials and Geometry Format

MSDL - Manchester Scene Description Language

 3DML - by Flatland inc.

 C4D – Cinema 4D file format

 SLDPTR - SolidWork "part"

WINGS - Wings3D object

 NFF - Used by Sense8's WorldToolKit

 SKP - Google sketch up

 KMZ - Google Earth model

 OFF - A general 3D mesh Object File Format

 OOGL - Object Oriented Graphics Library

 PLG - Used by REND386/AVRIL

 POV - “persistence of vision” ray-tracer

QD3D - Apple's QuickDraw 3D Metafile format

 TDDD - for Imagine & Turbo Silver ray-tracers

 NFF & ENFF - (Extended) Neutral File Format

 VIZ - Used by Division's dVS/dVISE

 VRML, VRML97 - Virtual Reality Modeling Language (RIP)

 X3D - tentato successore di VRML

 PLY - introdotto by Cyberware – tipic. dati range scan

 DICOM - Dalla casa omonima – tipic. dati CAT scan

 Renderman - per l'omonimo visualizzatore

 RWX - RenderWare Object

 Z3D - ZModeler File format

 etc, etc, etc...

Most used mesh file formats
(in games)
.OBJ (wavefront)

max diffusion
 indexed, normals , uv-mapping
 no colors (only material index for face)
 no skinning or animations

.SMD ()
 Skeletal animation + skinning
 normals , uv-mapping
 no indexed!
 no colors

.MD3 (Quake, IDsoft)
 vertex animations, normals
 no colors

.PLY (cyberware)
 customizable
 “academic”

.3DS ()
 YES: colors, uv-mapping,

indexed, materials, textures…
 NO: normals
 limited by vertex number (64K)

.COLLADA ()
 complete
 Born for being interchanged
 open standard
 Almost impossible to parsing it completely

.FBX ()
 complete, with animations
 complex, hard to parse

.MA / .MB ()
 complete, with animations
 complex, hard to parse

simple complex

m
ostcom

m
on

lesscom
m

on

45

46

3D Video Games
07: Meshes in Games
Part 1/2

2020-05-07

Marco Tarini
Università degli studi di Milano 23

Mesh
GPU

Object

LOAD

Life of a Mesh
in a Game Engine

DISK CENTRAL RAM GPU RAM

PREPROCESS
(maybe)

Mesh
Object

IMPORT

Mesh
File

Mesh Object
(in RAM)

 A (C++ / Javascript / etc) structure
in main RAM

 Choices for a game engine:
 which attribute to store?
 storage formats… (floats, bytes, double…)
 which preprocessing to offer

(typically, at load time)

47

48

3D Video Games
07: Meshes in Games
Part 1/2

2020-05-07

Marco Tarini
Università degli studi di Milano 24

How to represent a mesh?
(which data structures)

 Indexed mode in C++ :
class Vertex {

vec3 pos;
rgb color; /* attribute 1 */
vec3 normal; /* attribute 2 */

};

class Face{
int vertexIndex[3];

};

class Mesh{
vector<Vertex> verts; /* geom + attr */
vector<Face> faces; /* connectivity */

};

(2)

(1)

v3

v1

v2

Computing normals
from geometry

(1) compunte
normals of faces

(2) compute
normals of vertices

e1

e2

e1×e2

nො

nොଵ

nොଶ nොଷ

nොସ

nොହ

nො୴ =
nො + ⋯ + nො

nො + ⋯ + nො

49

52

3D Video Games
07: Meshes in Games
Part 1/2

2020-05-07

Marco Tarini
Università degli studi di Milano 25

Mesh processing:
(or, more in general, Geometry Processing)

 The algorithm above
(for the computation of per vertex normal)
is a tiny example of processing done over a mesh

 Mesh processing: the discipline of creating,
transforming, computing meshes
 inputs and/or outputs are meshes

 Part of, geometry processing:
 when the input and output are other data structure for

3D models
 See CG course for a very brief overview

Mesh processing:
typical tasks for the game industry

 Poly reduction / Retopology / Simplification
 e.g. LOD construction
 e.g. transition from (initial) hi-res to (final) low-poly

 Light baking
 Light precomputation
 e.g.: Ambient Occlusion

 U-V map construction
 parametrization / unwrapping

 Texturing
 creation of different types of textures

 Rigging / Skinning / Animation
 to animate

LATER

LATER

LATER

LATER

53

56

3D Video Games
07: Meshes in Games
Part 1/2

2020-05-07

Marco Tarini
Università degli studi di Milano 26

Useful general tools:
attribute transfer

 Given
 a source mesh M0 with attribute A
 a target mesh M1 similar (but not identical)

to M0 lacking that attribute
 Define attribute A in the vertices of M1
 Copying the attributes from M0

 Result: “retargeting” of…
 Animations, UV-mapping, textures, etc

 Results aren’t always perfect,
but can be useful as a starting point

(any, see the list!)

3D models:
suorces

 Like any asset, often just bought / off-sourced

57

60

3D Video Games
07: Meshes in Games
Part 1/2

2020-05-07

Marco Tarini
Università degli studi di Milano 27

3D models:
authoring pipeline

2D concepts
/ sketches

concept
artist

3D modeller
low-poly

mesh

Mesh:
authoring

 Task of the 3D modeller
 A type of digital artist

 Popular 3D modeling approaches:
 Manual low-poly modelling

 e.g. with wings3D

 Subdivision surfaces
 e.g. with blender

 Digital sculpting
 e.g. with Z-brush

61

62

3D Video Games
07: Meshes in Games
Part 1/2

2020-05-07

Marco Tarini
Università degli studi di Milano 28

Mesh authoring:
generic applications

 3D Studio Max (autodesk) ,
Maya (autodesk) ,
Cinema4D (maxon)
Lightweight 3D (NewTek),
Modo (The Foundry) , …
 generic, powerful, complete

 Blender
 idem, but open-source and freeware

(like: Gimp VS. Adobe Photoshop for
2D images)

 MeshLab
 open-source, big collection of

geometry processing algorithms …

 AutoCAD (autodesk),
SolidWorks (SolidThinking)
 for CAD

 ZBrush (pixologic), + Sculptris ,
 Mudbox (autodesk)

 cirtual sculpting metaphore, specialized on
manual editing of hi-freq details,
bumpmapping, normalmaps…

 Wings3D
 open-source, small, specialized in low-poly

modelling & subdivision surfaces

 [Rhinoceros]
 parametric surfaces (NURBS)

 FragMotion
 specialized on animated meshes

 + a lot of tools for specific contexts
 (editing of human models, of architectural

interiors, environments, or specific editors
for game-engines, etc...)

Low-poly modelling (demo)

Note: during creation, the meshes can be polygonal instead of triangle based, but is
simple to decompose any polygon into triangles
E.g. this can be done by the game engine as a simple preprocessing.

1 2

3 4 5

a cube

63

64

3D Video Games
07: Meshes in Games
Part 1/2

2020-05-07

Marco Tarini
Università degli studi di Milano 29

Low-poly modelling

1 2 3 4 5 6 7 8

9 10 11 12 13 14 17 18

19 20
21 22

23 24

25 26 27 28 29 30 31

…

this example by Karan Shah (3D artist) [link]

Low-poly modelling

1 2 3 4 5 6 7 8

9 10 11 12 13 14 17 18

19 20
21 22

23 24

25 26 27 28 29 30 31

…

this example by Karan Shah (3D modeller) [link]

66

67

