
3D Video Games
08: Textures in Games
Part 2/3

2020-05-14

Marco Tarini
Università degli studi di Milano 1

Course Plan

lec. 1: Introduction
lec. 2: Mathematics for 3D Games

lec. 3: Scene Graph
lec. 4: Game 3D Physics +
lec. 5: Game Particle Systems ◗
lec. 6: Game 3D Models
lec. 7: Game Textures◗
lec. 8: Game 3D Animations
lec. 9: Game 3D Audio
lec. 10: Networking for 3D Games
lec. 11: Artificial Intelligence for 3D Games
lec. 12: Game 3D Rendering Techniques

How is a texture mapped over
a given mesh?

22

23

3D Video Games
08: Textures in Games
Part 2/3

2020-05-14

Marco Tarini
Università degli studi di Milano 2

How is a texture mapped over a
given mesh?
 3D Models

i.e. tri-meshes with:
 per vertex attrib

 normals, color, AO, …

 LODs
 uv-mapping
 keyframes

 cyclic animations
 face-morphs, …

 “skinning”

 Materials
 lighting model stats / flags
 textures

 RGB maps
 normal maps
 alpha maps …

 shaders
 vertex, fragments, …

 Animations
 blend shapes
 skeletal animations
 kinematic animations
 geometry caches

 skeletons (rigs)

 Geometric proxies
 hit-boxes
 bounding objects
 AI-meshes

 Particle systems

 Environments
 3d scenes
 skydomes
 env. maps
 scene props

UV-Mapping of a mesh

 A mapping : mesh surface 2D texture space is
needed
 «parametrization» of the surface

 Store this mapping as per vertex attribute :
(u,v)
 The «u-v mapping» of the mesh

[0..1]2

24

25

3D Video Games
08: Textures in Games
Part 2/3

2020-05-14

Marco Tarini
Università degli studi di Milano 3

Modeling task:
“u-v mapping” construction

Texture “atlas”
(composed of

several “charts”)

u

v

UV mapping:
example

MESH TEXTURE SPACE

…

u

v
N = A

A N

B

B C
C

(vertex seam)

M
M

26

27

3D Video Games
08: Textures in Games
Part 2/3

2020-05-14

Marco Tarini
Università degli studi di Milano 4

Texture seams
(or cut)
 A vertex seam necessary

to encode the UV-map

Tri: Wedge 1: Wedge 2: Wedge 3:

T0 0 1 4

T1 4 2 0

T2 5 3 6

X Y Z U V …

V0 𝑝𝑥𝟎 𝑝𝑦𝟎 𝑝𝑧𝟎 𝑢𝟎 𝑣𝟎 …

V1 𝑝𝑥𝟏 𝑝𝑦𝟏 𝑝𝑧𝟏 𝑢𝟏 𝑣𝟏 …

V2 𝑝𝑥𝟐 𝑝𝑦𝟐 𝑝𝑧𝟐 𝑢𝟐 𝑣𝟐 …

V3 𝑝𝑥𝟐 𝑝𝑦𝟐 𝑝𝑧𝟐 𝑢𝟑 𝑣𝟑 …

V4 𝑝𝑥𝟑 𝑝𝑦𝟑 𝑝𝑧𝟑 𝑢𝟒 𝑣𝟒 …

V5 𝑝𝑥𝟑 𝑝𝑦𝟑 𝑝𝑧𝟑 𝑢𝟓 𝑣𝟓 …

V6 𝑝𝑥𝟒 𝑝𝑦𝟒 𝑝𝑧𝟒 𝑢𝟔 𝑣𝟔 …

GEOMETRY + ATTRIBUTES CONNECTIVITY

V1

V6 V2V3

V4V5

V0

Vertex
duplication

Vertex
duplication

Texture space notation

Texture 2D
u

v

Texture Space (or “parametric space" or "u-v space")

Texture Space = [0,1] x [0,1]

eg: 512 texels

e.g.: 1024 texels

1.0

1.0

29

30

3D Video Games
08: Textures in Games
Part 2/3

2020-05-14

Marco Tarini
Università degli studi di Milano 5

Note: Texture space independent from
texture resolution (or aspect ratio)

Texture 2D

s

t

1.0

1.0

1024x512

s
1.0

1.0

128x64

Convenient!
We can reduce
texture sheets res
(balancing quality /
memory) without
affecting the mesh
’UV mapping.

Eg: load in GPU RAM
only
a few smaller
MIP-map levels

t

Two notations

s-t
(es OpenGL)

s

t

1.0

1.0 u

v

1.0

1.0

u-v
(es DirectX)

(0,0)

(0,0)

Most used
(in game industry)

Most used
(in game industry)

31

32

3D Video Games
08: Textures in Games
Part 2/3

2020-05-14

Marco Tarini
Università degli studi di Milano 6

3D models sources:
comparison

scanned & cleaned
hi res mes

(30K triangles)

(sculpted meshes are similar)

manually edited
low-poly mesh
(2K triangles)

PERFECT for games!
(much easier to: animate,
re-edit, uvmap, …)

VS
Dino,
scanned
by artec3d

Construction of a UV-map for a mesh
(or, UV-mapping of a mesh)

 Typical task of the modeler (digital artists)
 (semi-)automatic algorithms very studied

 We need to find a spot in the (2D) texture space
for each (3D) mesh triangle

 Similar to to:
 Peel an apple (cutting part)
 Lay each produced peel in 2D (unfolding part)
 Pack the peels inside a rectangular space (packing part)

 Cuts (or “texture seams”) are (almost) always required!
 they are discontinuity of u,v attributes
 stored in the mesh as vertex-seams (vertex duplications)

33

34

3D Video Games
08: Textures in Games
Part 2/3

2020-05-14

Marco Tarini
Università degli studi di Milano 7

Modeling task:
“u-v mapping”

 Strategies:
 1. select of the cutting edge

…or…
1. assign faces to texture “charts”
 either way, decide where “texture seams” are

 2. unfolding
 minimizing “distortion” (by automatic algorithms)

 3. charts packing (again, often automatized)
 Minimize the empty space in textures
 Assign areas according to necessities

(important parts bigger texture space)
(sampling of the texels becomes adaptive!)

DEMO!

Tileable Textures

AA

B

B

35

36

3D Video Games
08: Textures in Games
Part 2/3

2020-05-14

Marco Tarini
Università degli studi di Milano 8

Tileable textures

Tileable textures

 Typical use

Very efficient in space

38

39

3D Video Games
08: Textures in Games
Part 2/3

2020-05-14

Marco Tarini
Università degli studi di Milano 9

Two types of UV-maps

 NOT injective UV mapping
 Different zones of the mesh mapped to the same

texture region
 e.g.: with overlapping charts
 Optimization of texture RAM

 Can exploit of simmetries / repetitions

 Injective UV mapping
 1 (non empty) point on the texture =

1 point on the mesh
 non-overlapping charts!
 Generality / Flexibility

 Used for several scopes (e.g. light baking)

 Different objectives
 often, both are present: 2 distinct UV maps
 2 distinct UV attributes for each vertex

Which is the type of the
UV-maps shown in prev slides?

aka: “Unwrapping”
or: “Unwrapped UVs”

or: “1:1 UV-map”
or: “Lightmap” UV-map

or: “Non-overlapping” UV-map

aka: “UV-map” (the standard)

RGB maps:
How are they obtained?

 Image first, then UV-mapping
 e.g. images from photos
 e.g. tileable images

 UV-mapping first, then paint 2D
 paint with 2D app (e.g. photoshop)

 UV-mapping first, then paint 3D
 paint within 3D modelling software,
 or: 1. export 2D rendering,

2. paint over with e.g. photoshop,
3. reimport images
4. goto 1

UV-mapper

UV-mapper 2D painter

UV-mapper 3D painter

40

42

3D Video Games
08: Textures in Games
Part 2/3

2020-05-14

Marco Tarini
Università degli studi di Milano 10

RGB maps:
How are they obtained?

…or:
 first paint 3D

 on hi-res model,
 “paint” on vertex attributes
 e.g. with Z brush…

 then coarsen
 build / autobuild final low-poly version

 then UV-map
 the low-poly model
 must be a 1:1 mapping!

 then auto-texture
 auto build texture

more
about
this later…

Cutout textures example
Texels = transparency level (0 or 1)

Alpha map

RGB map

43

44

3D Video Games
08: Textures in Games
Part 2/3

2020-05-14

Marco Tarini
Università degli studi di Milano 11

Cutout textures
Texels = transparency level (0 or 1)

 e.g.: drapes, beard...

by Micheal
Filipowski
2004

texture

Cutout textures
Texels = transparency level (0 or 1)

 e.g.: trees, foliage

45

46

3D Video Games
08: Textures in Games
Part 2/3

2020-05-14

Marco Tarini
Università degli studi di Milano 12

Texture mapping and Alpha Test

 Eg: fur, fur coats
(repeated)
texture

Bump-Map (*)

 a texture modelling (or, providing an illusion of)
shape details (i.e., high-frequency geometric features)
 details not modeled by the “real” geometry (the mesh)
 remember: meshes tend to be low-poly

 not much detail in them
 approach also known as “Texture-for-Geometry”
 rationale: texels are cheaper to render/store than vertices!
 geometric details may extrude out or be engraved in

the “real” (mesh) surface
 in many cases: the detail affects lighting only

 sufficient to trick the eye
 especially true with dynamic lighting

(*) This terminology not universal: «Bump-map» can mean just «displacement map»

47

48

3D Video Games
08: Textures in Games
Part 2/3

2020-05-14

Marco Tarini
Università degli studi di Milano 13

Types of Bump maps

Bump maps

Displacement
maps

Normal
maps

Object
Space

Tangent
Space

most commonly used

Types of Bump maps

 Bump map:
 A texture encoding hi-frequency details

 Displacement Map:
 Details are encoded by storing differences between mesh geometry

and detailed surface:
 as scalars (distance along the normal), or as vectors
 used for: on-the-fly re-tessellation, and parallax mapping technique

 Normal Map:
 Details are encoded by storing the normals of the detailed surface
 used for: affecting the lighting
 In which frame?

 In Object Space: (Only for 1:1 UV-mapping)
 In Tangent Space: (TBN space)
 Usable on more surfaces independently from the orientation
 Requires Tangent-Bitangent direction and normals on surface

49

51

3D Video Games
08: Textures in Games
Part 2/3

2020-05-14

Marco Tarini
Università degli studi di Milano 14

“F
la

t s
ha

di
ng

”
(n

ot
 u

se
d

in
 g

am
es

)

two coinciding
vertices

(vertex duplication)

crease
(hard edge)

curved,
smooth

What it is: What it looks like:

normals
derived from geometry
(constant inside faces)

normals as
vertex attributes

(interpolated inside faces)

piecewise
flat surface

curved
surface

Sm
oo

th
 s

ha
di

ng
(s

ta
nd

ar
d)

As
 a

bo
ve

,
w

ith
 s

ea
m

s

two coinciding
vertices

(vertex duplication)

crease
(hard edge)

curved,
smooth

What it is: What it looks like:

normals as
vertex attributes

(interpolated inside faces)

curved
surface

N
or

m
al

 a
tt

rib
ut

es
w

ith
 S

ea
m

s

normals: texels from
a texture

detailed
surfaceN

or
m

al
 m

ap
pe

d

52

53

3D Video Games
08: Textures in Games
Part 2/3

2020-05-14

Marco Tarini
Università degli studi di Milano 15

Bump-Map:
from the modeler perspective

 macro-structure of the object low-poly mesh
 e.g.: the general shape of the horse
 e.g.: the general shape of the face
 e.g.: the general shape of the dragon

 meso-structure of the object bump-map
 e.g.: the musculature of the horse
 e.g.: the wrinkles of the face
 e.g.: the flakes of the dragon

 micro-structure of the object material parameters
 e.g.: the velvet-like fur of the horse
 e.g.: the structure of the dermis / sebum
 e.g.: the micro roughness / smoothnes of the flakes

Displacement map :
concept

Stores the distance of the detailed surfaces
from the plain geometry

 example: a bump-map for a screw-head :

Detailed surfaces
(which I would like to represet)he

ad

of
 th

e

sc
re

w

low-poly mesh
(my approximation) (here: flat)

displacement map
(scalars)

0 0 0 0 .1 .5 .6 .6 .7 .5 .4 .2 0 0 0 0 0 0 00 0 0

0.2
0.6

0.4

54

56

3D Video Games
08: Textures in Games
Part 2/3

2020-05-14

Marco Tarini
Università degli studi di Milano 16

Displacement map: notes

 Each texel stores: a distance of the
detailed surface
 Along the normal direction (of low-poly mesh)
 1 scalar per texel –> 1 channel texture

 Which way:
 outwards (extrusions)
 inwards (excavations)
 or both (signed displacements)

 Storage:
 gray-scale image (1 scalar per pixel)
 remap values within the interval [0..1]
 global scale factor (on the fly)

 Possible uses:
 Direct lighting of implied normals: “embossing” effect

(old effect: it’s a bad approximation, not common anymore)
 Global illumination (ambient occlusion)
 «Parallax mapping» technqie
 Intermediate data for the construction of a normal map

white = outwards
black = flat

See later

Easy to paint and
manipulate!

See later

See later

(scalar) Displacement map:
Rendering – parallax mapping

 Technique used render a mesh
with a Displacement Map
 Bonus: the silhouette

of the object can be affected

 See lecture on rendering
 And Real time CG course!

Image courtesy of https://cgcookie.com/articles/normal-vs-displacement-mapping-why-games-use-normals

57

60

3D Video Games
08: Textures in Games
Part 2/3

2020-05-14

Marco Tarini
Università degli studi di Milano 17

Normal Map:
concept

Store the Normals of the detailed surfaces
 example -- a normal-map for a screw-head :

Detailed surface
(I would like to model)h

e
a

d

o
f t

h
e

sc

re
w

low-poly mesh
(approximation of ^) (here: flat)

normal map
(one normal per texel)

Normal Map:
notes

 Affects the lighting only
 not the parallax
 not the shape of the object
 The lighting reflects the hi-freq detail of the object

 dynamically (with variable lights!)
 Total illusion: very convenient

 If we are not trying to model a macro-structure
 In rendering: use the normal from the texture

 (for lighting)
 Instead of the interpolated per vertex normal

 Normals are expressed in cartesian coord
 Often

 But not always (∃ better ways to express unit vectors!)
 Question: ok, but in which space??? more later

61

62

3D Video Games
08: Textures in Games
Part 2/3

2020-05-14

Marco Tarini
Università degli studi di Milano 18

Normal-Mapping see demo!

+ =

Low-poly mesh
(uv-mapped!)

Bump-map
(here: a

tangent space normal map)

lots of cheap
geometric detail

(apparently)

Low-poly mesh

assets courtesy of “Mount&Blade” (Talesworlds)

Bump-map

Normal Maps: in which space
are the normals encoded?

 Object space: Object-Space Normal-Maps
(The same in which I express the vertex pos)
 the per-vertex normal becomes unnecessary!

 The normal from texture substitute it
 Trivial to apply (during rendering)

 just use the normal fetched from the texture for lighting
 normal-map is bound to a specific object

 cannot be reused for different objects
 Each region of the normal map is bounded to

one specific area region of the object!
 Injective UV-maps only!
 e.g. no tiling, no exploitation of simmetries

63

65

3D Video Games
08: Textures in Games
Part 2/3

2020-05-14

Marco Tarini
Università degli studi di Milano 19

Tangent space
(aka TBN space)

 A vector space defined ∀ point of the surface:
 Z axis: Normal

 orthogonal to surface

 X and Y axis: tangent vectors
 parallel to the surface
 X = Tangent
 Y = “Bi-Tangent”

(sometimes, but inappropriately: *Bi-Normal)

Tangent space
(aka TBN space)

 How to store them?
 As 3 versors stored as

(per-vertex) attributes
 So, they

are interpolated inside faces
(like any other attribute)

 Optimizations are possible!
 Not necessarily stored as 3 vectors (9 scalars)
 E.g.: instead of storing B, we store N and T, then B = N × T

 Note: they have discontinuities
 seams (vertex duplications) are necessary
 In first approximation, the same ones required by the UV-map

(but non only! why?)

66

67

3D Video Games
08: Textures in Games
Part 2/3

2020-05-14

Marco Tarini
Università degli studi di Milano 20

Tangent space
(aka TBN space)

 How to compute them?
 Normal

 as usual (see lecture on mesh)

 Tangent & Bi-Tangent
 determined by the UV-map!
 T = gradient of U coordinate
 B = gradient of V coordinate

 details:
 All three are defined and constant inside faces, then averaged at vertices

(see per-vertex normal computation)
 T,B,N can be only approximatively orthogonal to each other
 T,B,N reference frame can be left-handed or right-handed

(even different “handedness” in different parts of the same mesh)

Normal Maps: in which space
are the normals encoded?

 Tangent space: Tangent Space Normal-Maps
(the standard «bump-map», in games)
 extra attributes are now needed per vertex:

 Normal direction
 Tangent direction
 Bitangent direction

 normal-map can be shared by different objects
 non injective UV-maps can be used

 e.g., the normal-map can be tiled
 e.g., symmetries can be exploited

 normal-map is independent from the mesh
 e.g. can be constructed without knowing the mesh

The
tangent
space

basically, a TS normal map specifies how
to modify the per-vertex normal
instead of replacing it

68

69

3D Video Games
08: Textures in Games
Part 2/3

2020-05-14

Marco Tarini
Università degli studi di Milano 21

Mesh
GPU

Object

LOAD

Tangent Dirs (Tangent and Bitangent)
as per vertex attributes

DISK CENTRAL RAM GPU RAM

Mesh
Object

IMPORT

Mesh
File

PREPROCESS:
COMPUTE

TANGENT DIRS

WITH
TANGENT DIRS

(per vertex)

Normal-map:
strorage

 Idea: store it as an RGB texture
 R ↔ X
 G ↔ Y
 B ↔ Z

 but X,Y,Z ∈ [-1,+1] and R,G,B ∈ [0,+1]
thus a linear mapping is needed:

 Advantage: reuse compression of RGB textures/images
 Extra: store a (scalar) displacement map in 4th texture channel
 But, note: other, more efficient representations of versors exists

+1

-1

0

1.0

0.0

X∈ R∈ X = 2 R – 1
R = ½ (X + 1)

(normals are unit vectors)

70

71

3D Video Games
08: Textures in Games
Part 2/3

2020-05-14

Marco Tarini
Università degli studi di Milano 22

Normal-maps:
Storage

 Examples of
tangent space
normal-maps

Prevailing normal : X=~0 , Y=~0 , Z=~1
⇒
Prevailing color: R =~0.5 , G=~0.5, B=~1

(~light blue)

Per e.g.: Tiled
(tangent space) Normal Maps

+ =

UV-mapping
(using tiling!)
Tangent dirs.

Tileable!

Low-poly mesh

assets courtesy of “Mount&Blade” (Talesworlds)

Normal-map

not possible with object-space NM!

72

73

3D Video Games
08: Textures in Games
Part 2/3

2020-05-14

Marco Tarini
Università degli studi di Milano 23

Bump-maps assets at a glance
(can you tell which is which?)

Object Space
Normal map

Tangent Space
Normal map

Displacement
Map (scalar)

the default kind

Observe

Object Space
Normal map

1:1 UV-map
right leg != left leg

(Tangent Space)
Normal map

UV-mapping NOT injective
Exploited symmetries!

Left side of head = right side of head

74

75

3D Video Games
08: Textures in Games
Part 2/3

2020-05-14

Marco Tarini
Università degli studi di Milano 24

Normal map comparison: a summary
Object Space Normal map: Tangent Space Normal map:

Replaces the normal of the objects Modifies the normal of the objects

No normal attribute required
on the mesh any more

Requires two extra attributes on the mesh:
T an B versors (in addition to the normal)

Constructing the texture requires
to know the mesh it will be applied to

Textures can be constructed independently
from the mesh (just like a color map!)

E.g. a normal map cannot be constructed
from a displacement map (w/o the mesh)

E.g. a normal map can be constructed
from a displacement map

E.g. difficult to share a normal map
between models

Normal maps can be shared between
different models

“unwrapping” UV-maps required
(unless few lucky cases)

Can be applied to non-injective UV-maps
Eg: tiling, symmetry expolitation

E.g. no tiled textures.
E.g. no symmetry exploitation

E.g. tiled textures ok,
E.g. symmetry exploitation ok

E.g. east-wall and south-wall of a castle:
different normal maps required

E.g. east wall and south wall of a castle:
Same normal map possible

Looks colorful (if encoded as RGB) Looks azure-ish (if encoded as RGB)

MUCH MORE USED IN GAMES

How are normal-maps obtained?
(1/5) from a displacement map

Displacement map
come grayscale

= extruded – outwards

= deep – carved in

Filter
(e.g.
photoshop)

2D texture
painter
/ etc

Normal map

see demo!

76

77

3D Video Games
08: Textures in Games
Part 2/3

2020-05-14

Marco Tarini
Università degli studi di Milano 25

How are normal-maps obtained?
(1/5) from a displacement map

 Input: a scalar displacement map
Output: a normal map

 Algorithm (basic image processing):
 ∀ texel t of displacement map,

compute best fitting plane around t
 Consider all 3D points in a 3×3 patch surrounding t
 Find plane minimizing the summed squared distance from them
 It’s a least-squares minimizatin problem

 The normal of this plane is the normal for t
 Resulting normal map is expressed in tangent-space

 By definition! (one advantage of Tangent Space Normal Maps)
 Can be converted into Object-Space if needed

(for a given UV-mapped mesh – injective maps only of course)

or 5×5,
or 7×7…

a texel at coords u,v
corresponds to
a 3D point
(u , v , height[u,v])

How are normal-maps obtained?
(2/5) painting on 3D

 Direct painting of normal- on the model
 (can be don, e.g., with Z-brush, Sculptris Alpha…)

 Similar to a painting of color-maps
 but artist paints geometric

details not colors

 Similar to mesh sculpting too
 but, for each stroke, the system directly

updates the normal on the texture-map,
not the geometry on the mesh

78

79

3D Video Games
08: Textures in Games
Part 2/3

2020-05-14

Marco Tarini
Università degli studi di Milano 26

How are normal-maps obtained?
(3/5) captured from reality

 Captured form reality,
using photos

 Example: “Photometric Stereo”
 a form of “inverse lighting”
 a computer vision technique

 Input: n real images
 Same viewpoint
 Different illumination

 possibly, controlled and known
 Output: a Normal Map

 expressed in image space
 can be converted in object space,

or in tangent space

How are normal-maps obtained?
(3/5) captured from reality

 Normal map estimation from images
 Traditionally, many pictures are required in input
 Traditionally, controlled illumination is required

(I must place lights in known position)
 With Machine Learning,

it’s becoming possible to use a single image
with natural illumination

 Idea:
 input: a photo of a brickwall
 output: a diffuse map + a normal map + a specular map

 It’s an active area of research!

80

81

