
3D Video Games
08: Textures in Games
Part 3/3

2020-05-18

Marco Tarini
Università degli studi di Milano 1

Course Plan

lec. 1: Introduction
lec. 2: Mathematics for 3D Games

lec. 3: Scene Graph
lec. 4: Game 3D Physics +
lec. 5: Game Particle Systems ◗
lec. 6: Game 3D Models
lec. 7: Game Textures ◗

lec. 8: Game 3D Animations◗

lec. 9: Game 3D Audio
lec. 10: Networking for 3D Games
lec. 11: Artificial Intelligence for 3D Games
lec. 12: Game 3D Rendering Techniques

Extracting T and B vectors
from the UV-map (in a triangle)

 Object Space (3D) Texture Space (2D)

𝐩

𝐩

𝐩

e

e
𝐪

𝐪

𝐪

t⃗

t⃗

u

v

𝐓

𝐁

y

xz⃗

Idea:
u is some linear combination of t⃗ and t⃗ ⟹ 𝐓 is the same linear combination of e and e
v is some linear combination of t⃗ and t⃗ ⟹ 𝐁 is the same linear combination of e and e

81

82

3D Video Games
08: Textures in Games
Part 3/3

2020-05-18

Marco Tarini
Università degli studi di Milano 2

Extracting T and B vectors
from the UV-map (in a triangle)

 Input: 3D vertices 𝐩 , , and 2D vertices 𝐪 , ,

 Find 3D edge vectors e ,

and 2D edge vectors t⃗ ,

 Find scalars 𝑎, 𝑏 and 𝑐, 𝑑 such that…

𝑎 t⃗ + 𝑏 t⃗ = u =
1
0

 𝑐 t⃗ + 𝑑 t⃗ = v =
0
1

 Then
T = 𝑎 e + 𝑏 e B = 𝑐 e + 𝑑 e

Extracting T and B vectors
from the UV-map (in a triangle)

 Input: 3D vertices 𝐩 , , and 2D vertices 𝐪 , ,

 Find e = 𝐩 − 𝐩 t⃗ = 𝐪 − 𝐪

e = 𝐩 − 𝐩 t⃗ = 𝐪 − 𝐪

 Find scalars 𝑎, 𝑏 and 𝑐, 𝑑 such that…

 t⃗ t⃗
𝑎 𝑐
𝑏 𝑑

=
1
0

0
1

 Then
T = 𝑎 e + 𝑏 e B = 𝑐 e + 𝑑 e

⟹
𝑎 𝑐
𝑏 𝑑

= t⃗ t⃗

in matrix form: solve with a 2x2 matrix inversion

83

84

3D Video Games
08: Textures in Games
Part 3/3

2020-05-18

Marco Tarini
Università degli studi di Milano 3

How are normal-maps obtained?
(4/5) procedural generation (rare)

 Usual considerations about procedurality:
 Saves RAM, costs GPU/CPU
 Can be baked

in preprocessing
(becomes an asset)

 Can be build
at run-time

 Bonus: no repetition
artifacts, animatable

 Problem: control difficult

Procedural Textures (in general)

 A function from (u,v) to texel values
 Plainly replaces a texture fetch!
 Computed during rendering for each pixel (fragment shader)
 Therefore, implemented in shader languages (e.g. GLSL, HSLS)

 Costs/benefits (the usual ones):
 RAM / bandwidth / storage cost: reduces to almost nothing
 GPU usage: can be substantial (it’s per pixel!)
 resolution independent (similarly to a vector image)
 control / authoring: can be difficult to get the desired effect

 Usually limited to simple images

see Lecture on Rendering
and Real Time Graphics course

e.g. diffuse colors,
normals,
transparency, etc

𝑓
𝑢
𝑣

=

𝑟
𝑔
𝑏

in [0..1] x [0..1]

85

86

3D Video Games
08: Textures in Games
Part 3/3

2020-05-18

Marco Tarini
Università degli studi di Milano 4

Example: the flag of Japan
as a procedural RGB-map

𝑢

𝑣

1.0

0.5

0.3

1.00.5

𝑓
𝑢
𝑣

=

1
0
0

𝑖𝑓
𝑢
𝑣

−
0.5
0.5

< 0.3

1
1
1

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Solid Textures

87

88

3D Video Games
08: Textures in Games
Part 3/3

2020-05-18

Marco Tarini
Università degli studi di Milano 5

Solid Textures

 Volumetric voxellized Texture: 3D array of texels
 1 texel == 1 voxel

 E.g. each voxel one color RGB solid RGB textures
 As all the textures:

 In video RAM
 Fast access during rendering
 filtering (tri-linear) in access, MIP mapping …

 Model color onto volume
 surface + internal
 useful, e.g., for fractures

 Note: no need of UV-mapping!
 Texture indexed by geometric mesh (rescaled)

 Problem: ram space
 Cubic wrt the resolution
 Solution: procedural 3D texture?

example by ONLINE HELP

Procedural Solid Textures

𝑓
𝑢
𝑣
𝑠

=

𝑟
𝑔
𝑏

89

90

3D Video Games
08: Textures in Games
Part 3/3

2020-05-18

Marco Tarini
Università degli studi di Milano 6

Procedural Solid Textures

Gyross – project by Paolo P. Slepoi

How are normal-maps obtained?
(5/5) from a high-resolution model

 textures baking / detail recovery /
“detail texture” synthesis / texture for geometry

 input:
 hi-res mesh A with per-vertex attributes
 low-poly mesh B, with an injective UV-map

 output:
 textures for B storing the attributes of A

 a fully automatic process!

91

92

3D Video Games
08: Textures in Games
Part 3/3

2020-05-18

Marco Tarini
Università degli studi di Milano 7

Texture baking:
texture synthesis from hi-res models
 input examples:
 low-poly mesh A obtained from hi-res mesh B

via automatic simplification or manual retopology
 hi-res mesh B obtained from low-poly mesh A

via sculpting
 output examples:
 attributes = normals

→ an object-space normal map is produced
 attributes = base colors

→ a diffuse maps is produced
 attributes = baked (global) lighting / AO

→ a light-map / AO-map is produced
 store distances between A and B (no attribute required)

→ a displacement map is produced

then converted
to tangent space (using mesh A)

common case!

Hi-res
mesh

Low-poly,
UV-mapped
mesh

automatic
simplification

still low poly,
but now textured!

rendering

TEXTURE SHEETS
Normal-map,
Color-map,

…
Texture

synthesis

93

94

3D Video Games
08: Textures in Games
Part 3/3

2020-05-18

Marco Tarini
Università degli studi di Milano 8

Texture baking:
how to

Hi-res
model

Low-poly
model

Texture

u

v

find a suitable spot

Some
attribute

e.g.: color,
precomputed shading,

normal...
Code & Store

find a suitable spot

simplification
2K triangles

Scanned
500K triangles

Low Poly
2K triangles

95

96

3D Video Games
08: Textures in Games
Part 3/3

2020-05-18

Marco Tarini
Università degli studi di Milano 9

Hi-res mesh
(sculpted)

Low-res mesh
(UV-mapped)

Example from Overgrowth - David Rosen & Aubrey Serr

Hi-res mesh
(sculpted)

Low-res mesh
(UV-mapped)
Low-res mesh + 1024² normal map

example from Overgrowth – by David Rosen & Aubrey Serr

97

98

3D Video Games
08: Textures in Games
Part 3/3

2020-05-18

Marco Tarini
Università degli studi di Milano 10

example from Houdini 15 Mantra Rendering and Texture Baking Tutorial

6,272 △
low poly model
(UV-mapped)

6,272 △
+ 2048² normal map

6,422,528 △
(sculpted)

480,000 △
(scanned)

640 △
+ 1024² diffuse map
+ 1024² normal map

example by
“Total Baker”

3D point software

99

100

3D Video Games
08: Textures in Games
Part 3/3

2020-05-18

Marco Tarini
Università degli studi di Milano 11

Asset production pipeline
(a general concept in game-dev)

 A sequence of stages used to produce assets. Each stage:
 what is produced, starting from what
 using which tool(s), by which artist(s)
 storing which intermediate result(s), in which format, etc.

 Different pipelines for different classes of objects
 E.g. characters ≠ sceneries (“props”) ≠ equippable armours ≠ …
 Note: within a given game, all assets in a class are usually quite uniform

(comparable resolution, same set of texture sheets, same formats, etc.)

 In the past lectures, we mentioned many possible steps
 modelling (low poly modelling, sculpting, uv-mapping, LOD-ding…)
 texturing, geometric proxies, …
 TODO: the parts about animations (skinning + rigging + animation…)
 TODO: the parts about materials

 Identifying a good pipeline is not trivial!

Asset production pipeline:
an example
1. Concept drawings

 by a 2D artists
2. Low-poly model A

 by a 3D modeler, using low-poly editing tools
3. UV-mapping of A

 by a UV-mapper, or by automatic tool. output: an injective UV-map of A
4. Subdivision, then digital sculpting of Hi-Res model B

 by a 3D modeler, using digital sculpting tools
5. Painting over B

 using 3D painter, producing per-vertex colors
6. Texture baking

 Automatic construction of three Textures for A with attributes from B:
 Normals from B, (produces a normal map)
 Colors from B (produces a diffuse map)
 Baked lighting from B (produces a light-map)

105

106

