
3D Video Games
11: Networking 3D Games

2020-06-01

Marco Tarini
Università degli studi di Milano 1

3D VideoGames 2019/2020
Università degli Studi di Milano

Networking for 3D Games

Course Plan

lec. 1: Introduction
lec. 2: Mathematics for 3D Games

lec. 3: Scene Graph
lec. 4: Game 3D Physics +
lec. 5: Game Particle Systems ◗
lec. 6: Game 3D Models
lec. 7: Game Textures
lec. 8: Game 3D Animations ◗
lec. 9: Game 3D Audio
lec. 10: Networking for 3D Games
lec. 11: Artificial Intelligence for 3D Games
lec. 12: Game 3D Rendering Techniques

1

2

3D Video Games
11: Networking 3D Games

2020-06-01

Marco Tarini
Università degli studi di Milano 2

Player 2 has joined the game

 Multiplayer game types, according to gameplay
 collaborative
 competitive
 versus
 teams…

 How much multiplayer?
 no: single player
 2 players?
 10 players?
 >100?
 > 100000? («massively» multiplayer, MMO)

Player 2 has joined the game

 Types of multiplayer games
 Hot-seat

 players time-share

 Local multiplayer (Side-to-side)
 e.g. Split screen
 players share a terminal

 Networked
 each player on a terminal
 terminals connected…
 …over a LAN
 …over the internet

Needs networking

3

4

3D Video Games
11: Networking 3D Games

2020-06-01

Marco Tarini
Università degli studi di Milano 3

Networking in Games

 One task of the Game Engine
 in practice, many engines leave much to do

to game programmers

 Different scenarios:
 number of players? (2, 10, 100, 100.000?)
 game pace? (real time action != chess match)
 joining ongoing games : allowed?
 cheating : must it be prevented?
 security: is it an issue (e.g. DoS attacks)
 medium : LAN only? internet too?

Letency tolerance? Bandwith tolerance?

(main course: Online Game Design)

Networking in 3D Games

Objective: all players see and interact with
a common 3D virtual world

how can this illusion be achieved?

5

6

3D Video Games
11: Networking 3D Games

2020-06-01

Marco Tarini
Università degli studi di Milano 4

A few choices
of a networked-game dev

 What to communicate?
 complete status, status changes, inputs…

 How often ?
 at which rate

 Over which protocol ?
 TCP, UDP, WS …

 Over which network architecture ?
 Client/Sever, Peer-To-Peer

 How to deal with networking problems
 latency (“lag”) <== one main issue
 limited bandwidth
 connection loss

Reminder: Protocols

UDPTCP

IP

HTTP

 internet layer

 protocol layer

 application layerWS

7

8

3D Video Games
11: Networking 3D Games

2020-06-01

Marco Tarini
Università degli studi di Milano 5

Protocols

 Connection based
 Guaranteed reliable
 Guaranteed ordered
 Automatic breaking

of data into packets
 Flow control
 Easy to use,

feels like read and write
data to a file

 What’s a connection? 🤷
 No reliability
 No ordering
 Break your data

yourself
 No flow control
 Hard.

Must detect and deal
with problems yourself.

UDP socketsTCP sockets

UDP vs TCP

 Problem with TCP
 too many strong guarantees

 they cost in terms of latency (==>lag)!
 no good for time critical application

 (if they have to be used, at least enable
the option TCP_NODELAY)

 Problem with UDP
 not enough guarantees

 guarantees: “packets arrives all-or-nothing”. The end.
 no concept of connection
 no timeouts, no handshake, a port receives from anyone

 no guarantees: packets can arrive…
 …out of order :-O , …not at all :-O , …in multiple copies :-O

caching?
no, thank you

Nagle’s
algorithm

Nagle’s
algorithm

9

10

3D Video Games
11: Networking 3D Games

2020-06-01

Marco Tarini
Università degli studi di Milano 6

UDP vs TCP

 Problem with TCP
 too many costly guarantees

 Problem with UDP
 not enough guarantees

 The hard way:
 use UDP,

but manually re-implement a few guarantees
 best, for the most challenging scenario

 fast paced games, not on LAN

Virtual connections over UDP:
how-to (notes)

 add connection ID to packets
 to filter out unrelated ones

 time out on prolonged silence (e.g. few secs)
 declare “connection” dead

 add serial number to packets
 to detect when one went missing / is out of order / is duplicate
 (warning: int numbers do loop – solutions?)

 give ack back for received packets
 optimize for lucky (& common) cases!

 N (say 100) received msg == 1 ack (with bitmask)
 resend? only a few times, then give up (data expired)

 congestion avoidance: measure delivery time
 tune send-rate (packets-per-sec) accordingly

 obviously: NON blocking receives!

what TPC
doesn’t
understand

11

12

3D Video Games
11: Networking 3D Games

2020-06-01

Marco Tarini
Università degli studi di Milano 7

Choosing a Protocol

 In summary, it is a question of pacing
 fast paced game?

 action games, FPS, …
 (sync every 20-100 msec)

 slow paced game?
 RTS, RPG…
 (sync every ~500 msec)

 slower paced games?
 MMORPGs, cards …
 (sync every few sec)

 traditional turn based ?
 chess, checker
 (sync every hour/day)

UDP necessary
(unless LAN only)

can get away with TPC

why not just HTTP

may as well use EMAIL

In Unity:

UDPTCP

IP

HTTP

 internet layer

 protocol layer

 application layerWS

UDPTCP

IP

HTTPWS

Network Transport

Network Manager

 transport layer

 high level layer

13

14

3D Video Games
11: Networking 3D Games

2020-06-01

Marco Tarini
Università degli studi di Milano 8

In Unity:

 Low level: Transport Layer
 Builds up guarantees over UDP (connections)
 Easy to use as TCP, but optimized for games

 see how-to list above
 Can work over WS instead UDP (abstracts the differences)

 WS needs be used for web / WebGL games
 Hi level: Network Manager

 presets network connectivity
 standard “client hosted” games

 server is also a player
 controls shared state of the game
 deals with clients
 sends remote commands

Network structure:
Peer-to-Peer

15

16

3D Video Games
11: Networking 3D Games

2020-06-01

Marco Tarini
Università degli studi di Milano 9

Controls and Agent
(a useful abstraction)

(P1) agent

local multiplayer

Player 1

(P2) agent Player 2

virtual environmentvirtual environment

Controls and Agent
(a useful abstraction)

(P1) agent

local multiplayer (on different devies)

Player 1

(P2) agent Player 2

virtual environmentvirtual environment

17

18

3D Video Games
11: Networking 3D Games

2020-06-01

Marco Tarini
Università degli studi di Milano 10

Controls and Agent
(a useful abstraction)

LAN multiplayer

(P1) agent

(P2) agent

virtual environmentvirtual environment

Player 1

Player 2

L A N

Controls and Agent
(a useful abstraction)

single player!

Player Agent

NPC Agent

virtual environmentvirtual environment

Player

AI

19

20

3D Video Games
11: Networking 3D Games

2020-06-01

Marco Tarini
Università degli studi di Milano 11

Controls and Agent
(a useful abstraction)

replay! (e.g. attract mode of old Coin-op)

Agent 1

Agent 2

virtual environmentvirtual environment

recorded history 1

recorded history 2

Deterministic Lockstep
(on Peer-to-Peer)

P1

P2 P3

P4

21

22

3D Video Games
11: Networking 3D Games

2020-06-01

Marco Tarini
Università degli studi di Milano 12

Deterministic Lockstep
(on Peer-to-Peer)

P1

P2 P3

P4

Deterministic Lockstep
(on Peer-to-Peer)

 Game evolution = sequence of “turns”
 e.g. physics steps (fixed dt !)

 Each node sends its current controls (inputs)
 to everybody else

 After all controls are received,
each node computes its own evolution
 deterministically:

same input same result

even if
independently computed

23

24

3D Video Games
11: Networking 3D Games

2020-06-01

Marco Tarini
Università degli studi di Milano 13

physics

rendering

Deterministic Lockstep
(on peer-to-peer network)

PLAYER 1

FIRE BUTTON PRESSED

WEAPON HAS FIRED

lantency (“lag”)

PLAYER 2

physics

P1 HAS FIRED

rendering

Deterministic Lockstep:
the good

 elegant and simple!
 minimal bandwidth needed

 only sent data = controls
 compact! (e.g. a bitmask)

 does not depend on complexity of virtual environment
 cheating: inherently limited

 but a few ways to cheat are still possible,
e.g.:
 aimbots (unlawful assist from AI)
 x-rays (unlawful reveal of info to player)

 mixes well with:
 non-cheating AI, replays, player performance recording…

 can use simple TCP connections
 because we need 0% packet loss anyway (but…)

25

26

3D Video Games
11: Networking 3D Games

2020-06-01

Marco Tarini
Università degli studi di Milano 14

Deterministic Lockstep:
can as well use TPC instead of UDP ?

 why yes:
 TPC is so simple!

 takes care of everything
 works well, when no packet loss

 (with loss, we need resend it anyway: let TPC do that)
 makes little sense to use UDP and then…

try to re-implement all TPC over it
 at the beginning of dev,

UDP is a (premature) optimization
 why not:
 to degrade better with lost packets
 e.g.: use redundancy – instead of resend-on-failure

 controls are small: send 100+ controls in every packet
 keep resending until ack received

Deterministic Lockstep

 Common, e.g., in:
 RTS

 controls = orders
 can be fairly complex
 but game status =

much more complex

 first generation FPS
 controls =

[gaze dir + key status]

Doom ID-soft, 1998…why not anymore?

Command and Conquer
EA / Westmany et al
1995..2012

Starcraft Blizzard 1998-2015

Age of Empires
Ensemble Studios et al,
1998..2015

27

29

3D Video Games
11: Networking 3D Games

2020-06-01

Marco Tarini
Università degli studi di Milano 15

Deterministic Lockstep
(on peer-to-peer): the bad
 responsiveness:

 input-to-response delay of 1 x delivery time (even locally!)
 (you cannot act immediately even on your own local input)

 does not scale with number of players
 quadratic number of packets
 2P ok, 100P not ok

 input rate = packet delivery rate
 delivery rate = as fast as the slowest connection allows
 connection problems (anywhere): everybody freezes!
 joining ongoing games: difficult

 needs sends full game state to new player
 assumes full agreement on initial conditions

 ok, that is fairly easy to get
 assumes complete determinism!

Determinism: traps

 Pseudo-Random? not dangerous
 fully deterministic (just agree on the seed)

 Physics: many preclusions and traps
 variable time step? bad
 time budgeting? bad
 hidden threats:

order of processing of particles/constraints
 anything that depends on clock?
 poison to determinism

 GPU computations? very dangerous
 slightly different outcome on each card

 floating point operations?
 many hidden dangers,

e.g. different hardwired implementations
 best to assume very little (fixed point is much safer)

 NOTE: 99.999% correct == not correct
 virtual world is faithful to reality enough to be chaotic butterfly effect:

the tiniest local difference == completely different outcomes soon

The entire game system
must be designed
from the start with
“determinism” in mind …

…and it still difficult to get
(and debug)

30

31

3D Video Games
11: Networking 3D Games

2020-06-01

Marco Tarini
Università degli studi di Milano 16

Model: Peer-to-Peer
Network topology: Fully Connected

Peer A

Peer C

Peer B

Peer D

Model: Client / Server
Network topology: star

Client A

Client C

Client B

Client D

Game
Server

32

33

3D Video Games
11: Networking 3D Games

2020-06-01

Marco Tarini
Università degli studi di Milano 17

Deterministic lockstep
with Star-shaped network

 Server sits on central node
 Protocol
 Each client sends his controls to server
 Server collects all controls and sends back to clients

 Advantage:
 scalability:

number of packets becomes linear (not quadratic)
 Cost:
 responsiveness:

latency = 2 x delivery time :-O
 Bonus: the server can now be made authoritative
 Many new options available. For example…

hurts
gameplay!

“Server is the man”
(authoratitative server)

 The server: it has the last word
 For example:
 Packet loss from player 3?

Server makes up control for player 3
(instead of waiting for them)

 Note: server defines what player 3 eventually did,
not player 3 itself!

 i.e. clients take server’s word even for its own actions
 Packet loss affects one player only

34

35

3D Video Games
11: Networking 3D Games

2020-06-01

Marco Tarini
Università degli studi di Milano 18

Client-Server

Client A

Client B

Game
Server

“Game-Status Snapshots”
paradigm

1

Client A

Client B

2

2

1

Game
Server

Physics / AI

36

37

3D Video Games
11: Networking 3D Games

2020-06-01

Marco Tarini
Università degli studi di Milano 19

Game-Status Snapshots

 Client:
 just a remote visualizer

of the current status
 status is “read only”

 (+ remote input collector)

 Server:
 computation of the

evolving status
 (including physics)

 it’s where
the “real game” runs

Game-Status Snapshots

 Client:
 connected:

to server only
 captures input
 sends controls
 receives game status

 or relevant portions of it

 renders it
 using all relevant assets

 Server
 connected:

to all players
 receives all controls

 (missing? doesn’t matter)

 updates game status
 physical simulations, etc

 sends current status
 to all

Physics,
cosmetic
effects only

Physics
Graphics

UISounds
AI

39

40

3D Video Games
11: Networking 3D Games

2020-06-01

Marco Tarini
Università degli studi di Milano 20

Game-Status Snapshots

 the gains:
 determinism: no longer needs be assumed
 joining ongoing games: trivial now
 packet loss: bearable (hurts the player only)

 to profit: UDP
 slower connection: bearable (affects that player only)

 the losses:
 packet size: a lot bigger!

 optimizations, to counter this:
 compress world status
 send to each client only the portions which interest its player

 responsiveness:
from input to effect = delivery time :-(
from input to visual = 2 x delivery time :-O hurts

gameplay!

Game-Status Snapshots

PLAYER 1 SERVER

Physics / AI

FIRE BUTTON PRESSED

WEAPON HAS FIRED

total lantency

41

42

3D Video Games
11: Networking 3D Games

2020-06-01

Marco Tarini
Università degli studi di Milano 21

Game-Status Snapshots

PLAYER 1 SERVER

FIRE BUTTON PRESSED

WEAPON HAS FIRED

total lantency

Game-Status Snapshots:
with Interpolation: the idea

 World “Snapshot” contains:
 data needed for 3D rendering:

(position-orientation of objects, plus anything else needed)
 Problem:

 large snapshot size! (even with optimizations)
 ==> few FPS (in the physical simulation)
 ==> “jerky” animations

 Solution 1: client-side interpolation
 client keeps last two snapshots in memory

 last received one + the previous one
 interpolates between them,

 client lags behind server by even more!
 gain: smoothness (high FPS with low packet - rate)
 loss: responsiveness (increased latency) oh noes!

43

44

3D Video Games
11: Networking 3D Games

2020-06-01

Marco Tarini
Università degli studi di Milano 22

Game-Status Snapshots:
with Extrapolation: the idea

 World “Snapshot” contains:
 data needed for 3D rendering:

(position-orientation of objects, plus anything else needed)
 Problem:

 large snapshot size! (even with optimizations)
 ==> few FPS (in the physical simulation)
 ==> “jerky” animations

 Solution 2: client-side extrapolation
 clients keeps last two snapshots in memory

 last received one + the previous one
 extrapolates between them, i.e. shows the expected “future”

 i.e. it shows an attempted prediction to the next snapshot
 NOTE: this prediction is often wrong: glitches.

 gain: responsiveness
 loss: accuracy - lots of glitches. :-(

Client-side Game Evolution
(aka distributed physics): the idea
 Each client:

 in charge for game evolution
 including physics

 communicates to others
a reduced game-status snapshot
 describes only status of own player

(e.g. positions + ori, its flying bullets)
 receives other partial snapshots
 merges everything up

 (updates statuses of other players)
 Simple, zeroed latency

 immediately responsive to local player controls
 remote agents updated according to “what their client says”

 Problem: can still need determinism
 (who keeps NPCs / environment in sync?)

 Problem: authoritative clients : prone to cheating!!!

to server,
or , in a P2P network,
to each other peers

45

46

3D Video Games
11: Networking 3D Games

2020-06-01

Marco Tarini
Università degli studi di Milano 23

Client-Side Prediction:
the idea

 Client:
 get Commands from local inputs
 sends Commands to Server
 computes game evolution (the prediction)

 maybe “guessing” other players commands (which it ignores)
 zero latency!

 Server:
 receives Commands (from all clients)
 computes game evolution (the “reality”)

 “Server Is The Man” - Tim Sweeney (Unreal Engine, EPIC)
 prevents cheating!

 sends Snapshot back (to all clients)
 Client:

 receives Snapshot (the “real” game status)
 corrects its prediction, if needed

Client-Side Prediction:
correction from the server

 The server-side “real” simulation
lives k msecs in the past
of the client-side “predicted” one
 k = deliver time
 remember: virtual time != real world time

 When server correction arrives to client,
it refers to 2k msecs ago (for the client)

 Q: how to correct… the past?

47

48

3D Video Games
11: Networking 3D Games

2020-06-01

Marco Tarini
Università degli studi di Milano 24

Client-Side Prediction

t=0

t=0

keypress

t=1

t=2

t=3

t=4

t=5

t=1

PLAYER 1 SERVER

Client-Side Prediction

t=0

t=1

t=2

t=3

t=0

t=1

t=4

t=5

t=2

t=3

t=4

PLAYER 1 SERVER

49

50

3D Video Games
11: Networking 3D Games

2020-06-01

Marco Tarini
Università degli studi di Milano 25

Client-Side Prediction:
correction from the server

 Q: How to correct… the past?
 A:
 keep last N statuses in memory

 including own controls
 “real” status (the correction) of the past

arrives from server
 compare it with corresponding past status:

 does it match?
nothing to do

 does it mismatch?
discard frame and following ones,
rerun simulation to present (reusing stored controls)

Re-running physical simulation

 Just need to catch up with the present
 Physics and AI only… at full speed
 no graphics, no sound rendering,

no cosmetic particle system…
 Can use larger dt if necessary
 Compromises accuracy

 Must reuse same controls of own player
 Which are also cached

 Note: player is never shown these intermediate
steps. Only the final result

 Glitches when going from current present to
a different (corrected) present

51

52

3D Video Games
11: Networking 3D Games

2020-06-01

Marco Tarini
Università degli studi di Milano 26

Client-Side Prediction:
correcting the past

t=10 t=11 t=12 t=13 t=14

now

t=11

PLAYER 1 SERVER

=?=

Client-Side Prediction:
correcting the past

t=10 t=11 t=12 t=13 t=14

now

t=11 t=12 t=13 t=14

PLAYER 1 SERVER

=/=

53

54

3D Video Games
11: Networking 3D Games

2020-06-01

Marco Tarini
Università degli studi di Milano 27

Client-Side Prediction:
what causes mispredictions?

 Lack of determinism
 e.g. physics was approximated – “soft real time”
 see above for more possible causes of this
 (minor/rare issue)

 Didn’t account that own controls were
not received by server (in time)
 server: “actually, you didn’t jump, back then”
 authoritative server – server defines the truth,

(even when the client is in a better position to know)
 (minor/rare issue)

 Didn’t account for other players’ controls
 (the biggest issue)

 Note: none of the above breaks the game (hopefully)
 it just causes minor / temporary glitches (maybe)

Client-Side Prediction:
optimizations 1/2

 reduce snapshots size
(==> to increase packet frequency)
 partial snapshots: refresh more often the parts

which are most likely to be predicted wrong /
or which changed

 drastic space reductions!
 but make sure that every part is eventually refreshed

 reduce correction computation
(==> so to make corrections quicker)
 partial physic steps:

update only the parts affected by the error
 use bigger dt (fewer steps to get to present)

55

56

3D Video Games
11: Networking 3D Games

2020-06-01

Marco Tarini
Università degli studi di Milano 28

Client-Side Prediction:
optimizations 2/2

 tentatively predict also unknown data
(==> so to reduce correction frequency)
 e.g. also predict other player’s controls
 easiest prediction: players do what they did last frame

 trigger correction only when status differ enough
(==> so to reduce correction frequency)
 e.g. when any spatial position difference > epsilon
 tolerate small discrepancies
 (warning: discrepancies tend to explode exponentially with

virtual time – because Chaos)

Client-Side Prediction:
notes

 A snapshot = includes physical data
 (not just for the 3D rendering, also to update physics)
 can be small, when optimized!

 No latency: immediately react to local input
 client proceeds right away with next frame
 when prediction is correct: seamless illusion
 otherwise: (minor?) glitches

 Determinism: not assumed
 Cheating: not easy (server is authoritative)

57

58

3D Video Games
11: Networking 3D Games

2020-06-01

Marco Tarini
Università degli studi di Milano 29

Summary : rules of thumb

 How to choose the network layout
 peer-to-peer :

 reduced latency
 quadratic number of packages

(with number of players)

 client-server :
 doubled latency
 linear number of packages

(with number of players)
 REQUIRED, for any solution with authoritative server
 REQUIRED, for num players >> 4

Summary : rules of thumb

 How to choose the network paradigm
 Deterministic Lockstep, if

 determinism can be assumed
 few players (up to 4-5)
 fast + reliable connection (e.g. LAN)

 Game-status Snapshots, if
 game status not overly complex
 a little latency can be tolerated

 Client-side evolution, if
 preventing cheating not important

 Client-side prediction + server correction, if
 game status not overly complex

or, slow paced game

RTS
most common
option !

FPS
most common
option !

59

60

3D Video Games
11: Networking 3D Games

2020-06-01

Marco Tarini
Università degli studi di Milano 30

Summary:
classes of solutions

 Who computes game evolution? (incl. physics)
 deterministic-lockstep : clients

 there may be no server at all: peer-to-peer
 independent computation, same result

 game-status snapshots : server
 clients are just visualizers
 maybe with interpolation / extrapolation

 (distributed physics : both clients and server)
 clients in charge for own agent(s)
 server in charge for env. / NPCs

 client-side predictions : both clients and server
 clients “predict” (just for local visualization purposes)
 server “corrects” (it has the last word!)

Cloud-gaming with video-streaming
(aka game on demand)

1

Client A

Client B

2

2

1

Game
Server

physics rendering

AI
sound
rendering

61

62

3D Video Games
11: Networking 3D Games

2020-06-01

Marco Tarini
Università degli studi di Milano 31

Cloud-gaming with video-streaming

 Client:
 connected: to server only
 captures + sends input
 receives video + audio
 decompresses video

 Server
 connected: to all players
 computes everything

(for each player!)
 compresses video + audio

video-stream
decompression

physics
(+particle fxs)

rendering (+anim)

sound rendering
AI

input collection

video-stream compression

Cloud-gaming with video-streaming
(aka game on demand)

 Compared to game snapshots technique…
 Server now does everything
 3D Physics + AI (same as with Game-Status snapshots)
 3D Rendering (“remote” rendering)

(including animations, particle effects…)
 3D Sound rendering
 Compresses and send 2D video

 Client does almost nothing
 Collects and sends inputs (controls)
 Receives and decompresses 2D video

×N times!
(once for
each player)

63

64

3D Video Games
11: Networking 3D Games

2020-06-01

Marco Tarini
Università degli studi di Milano 32

Cloud-gaming with video-streaming

 Advantages: client is “thin”
 client does (almost) nothing
 client needs nothing (no asset, no storage)
 total: client capabilities can be extremely limited (a pad)

 Challenges:
 Server must be very powerful
 High bandwidth required (high-res video + audio)
 Latency!!! It now includes two-ways trip,

plus compression by server,
plus decompression by client

 Video resolution: now makes thing more difficult

Luckily, video-on-demand
technologies can be reused

Cloud-gaming with video-streaming
(aka game on demand)

 Fast growing technique
 Latency = maybe 80-100 ms
 Is this acceptable?

 Bandwidth = min 25-50 mbits/s
 Will it work for

hard-core games?

(Google)

65

66

