
3D Video Games
11: Networking 3D Games

2020-06-01

Marco Tarini
Università degli studi di Milano 1

3D VideoGames 2019/2020
Università degli Studi di Milano

Networking for 3D Games

Course Plan

lec. 1: Introduction 
lec. 2: Mathematics for 3D Games 

lec. 3: Scene Graph 
lec. 4: Game 3D Physics  + 
lec. 5: Game Particle Systems ◗
lec. 6: Game 3D Models 
lec. 7: Game Textures
lec. 8: Game 3D Animations ◗
lec. 9: Game 3D Audio 
lec. 10: Networking for 3D Games
lec. 11: Artificial Intelligence for 3D Games 
lec. 12: Game 3D Rendering Techniques

1

2

3D Video Games
11: Networking 3D Games

2020-06-01

Marco Tarini
Università degli studi di Milano 2

Player 2 has joined the game

 Multiplayer game types, according to gameplay
 collaborative
 competitive
 versus
 teams…

 How much multiplayer?
 no: single player
 2 players?
 10 players?
 >100?
 > 100000? («massively» multiplayer, MMO)

Player 2 has joined the game

 Types of multiplayer games
 Hot-seat

 players time-share

 Local multiplayer (Side-to-side)
 e.g. Split screen
 players share a terminal

 Networked
 each player on a terminal
 terminals connected…
 …over a LAN
 …over the internet

Needs networking

3

4

3D Video Games
11: Networking 3D Games

2020-06-01

Marco Tarini
Università degli studi di Milano 3

Networking in Games

 One task of the Game Engine
 in practice, many engines leave much to do

to game programmers

 Different scenarios:
 number of players? (2, 10, 100, 100.000?)
 game pace? (real time action != chess match)
 joining ongoing games : allowed?
 cheating : must it be prevented?
 security: is it an issue (e.g. DoS attacks)
 medium : LAN only? internet too?

Letency tolerance? Bandwith tolerance?

(main course: Online Game Design)

Networking in 3D Games

Objective: all players see and interact with
a common 3D virtual world

how can this illusion be achieved?

5

6

3D Video Games
11: Networking 3D Games

2020-06-01

Marco Tarini
Università degli studi di Milano 4

A few choices
of a networked-game dev

 What to communicate?
 complete status, status changes, inputs…

 How often ?
 at which rate

 Over which protocol ?
 TCP, UDP, WS …

 Over which network architecture ?
 Client/Sever, Peer-To-Peer

 How to deal with networking problems
 latency (“lag”) <== one main issue
 limited bandwidth
 connection loss

Reminder: Protocols

UDPTCP

IP

HTTP

 internet layer

 protocol layer

 application layerWS

7

8

3D Video Games
11: Networking 3D Games

2020-06-01

Marco Tarini
Università degli studi di Milano 5

Protocols

 Connection based
 Guaranteed reliable
 Guaranteed ordered
 Automatic breaking

of data into packets
 Flow control
 Easy to use,

feels like read and write
data to a file

 What’s a connection? 🤷
 No reliability
 No ordering
 Break your data

yourself
 No flow control
 Hard.

Must detect and deal
with problems yourself.

UDP socketsTCP sockets

UDP vs TCP

 Problem with TCP
 too many strong guarantees

 they cost in terms of latency (==>lag)!
 no good for time critical application

 (if they have to be used, at least enable
the option TCP_NODELAY)

 Problem with UDP
 not enough guarantees

 guarantees: “packets arrives all-or-nothing”. The end.
 no concept of connection
 no timeouts, no handshake, a port receives from anyone

 no guarantees: packets can arrive…
 …out of order :-O , …not at all :-O , …in multiple copies :-O

caching?
no, thank you

Nagle’s
algorithm

Nagle’s
algorithm

9

10

3D Video Games
11: Networking 3D Games

2020-06-01

Marco Tarini
Università degli studi di Milano 6

UDP vs TCP

 Problem with TCP
 too many costly guarantees

 Problem with UDP
 not enough guarantees

 The hard way:
 use UDP,

but manually re-implement a few guarantees
 best, for the most challenging scenario

 fast paced games, not on LAN

Virtual connections over UDP:
how-to (notes)

 add connection ID to packets
 to filter out unrelated ones

 time out on prolonged silence (e.g. few secs)
 declare “connection” dead

 add serial number to packets
 to detect when one went missing / is out of order / is duplicate
 (warning: int numbers do loop – solutions?)

 give ack back for received packets
 optimize for lucky (& common) cases!

 N (say 100) received msg == 1 ack (with bitmask)
 resend? only a few times, then give up (data expired)

 congestion avoidance: measure delivery time
 tune send-rate (packets-per-sec) accordingly

 obviously: NON blocking receives!

what TPC
doesn’t
understand

11

12

3D Video Games
11: Networking 3D Games

2020-06-01

Marco Tarini
Università degli studi di Milano 7

Choosing a Protocol

 In summary, it is a question of pacing
 fast paced game?

 action games, FPS, …
 (sync every 20-100 msec)

 slow paced game?
 RTS, RPG…
 (sync every ~500 msec)

 slower paced games?
 MMORPGs, cards …
 (sync every few sec)

 traditional turn based ?
 chess, checker
 (sync every hour/day)

UDP necessary
(unless LAN only)

can get away with TPC

why not just HTTP

may as well use EMAIL

In Unity:

UDPTCP

IP

HTTP

 internet layer

 protocol layer

 application layerWS

UDPTCP

IP

HTTPWS

Network Transport

Network Manager

 transport layer

 high level layer

13

14

3D Video Games
11: Networking 3D Games

2020-06-01

Marco Tarini
Università degli studi di Milano 8

In Unity:

 Low level: Transport Layer
 Builds up guarantees over UDP (connections)
 Easy to use as TCP, but optimized for games

 see how-to list above
 Can work over WS instead UDP (abstracts the differences)

 WS needs be used for web / WebGL games
 Hi level: Network Manager

 presets network connectivity
 standard “client hosted” games

 server is also a player
 controls shared state of the game
 deals with clients
 sends remote commands

Network structure:
Peer-to-Peer

15

16

3D Video Games
11: Networking 3D Games

2020-06-01

Marco Tarini
Università degli studi di Milano 9

Controls and Agent
(a useful abstraction)

(P1) agent

local multiplayer

Player 1

(P2) agent Player 2

virtual environmentvirtual environment

Controls and Agent
(a useful abstraction)

(P1) agent

local multiplayer (on different devies)

Player 1

(P2) agent Player 2

virtual environmentvirtual environment

17

18

3D Video Games
11: Networking 3D Games

2020-06-01

Marco Tarini
Università degli studi di Milano 10

Controls and Agent
(a useful abstraction)

LAN multiplayer

(P1) agent

(P2) agent

virtual environmentvirtual environment

Player 1

Player 2

L A N

Controls and Agent
(a useful abstraction)

single player!

Player Agent

NPC Agent

virtual environmentvirtual environment

Player

AI

19

20

3D Video Games
11: Networking 3D Games

2020-06-01

Marco Tarini
Università degli studi di Milano 11

Controls and Agent
(a useful abstraction)

replay! (e.g. attract mode of old Coin-op)

Agent 1

Agent 2

virtual environmentvirtual environment

recorded history 1

recorded history 2

Deterministic Lockstep
(on Peer-to-Peer)

P1

P2 P3

P4

21

22

3D Video Games
11: Networking 3D Games

2020-06-01

Marco Tarini
Università degli studi di Milano 12

Deterministic Lockstep
(on Peer-to-Peer)

P1

P2 P3

P4

Deterministic Lockstep
(on Peer-to-Peer)

 Game evolution = sequence of “turns”
 e.g. physics steps (fixed dt !)

 Each node sends its current controls (inputs)
 to everybody else

 After all controls are received,
each node computes its own evolution
 deterministically:

same input  same result

even if
independently computed

23

24

3D Video Games
11: Networking 3D Games

2020-06-01

Marco Tarini
Università degli studi di Milano 13

physics

rendering

Deterministic Lockstep
(on peer-to-peer network)

PLAYER 1

FIRE BUTTON PRESSED

WEAPON HAS FIRED

lantency (“lag”)

PLAYER 2

physics

P1 HAS FIRED

rendering

Deterministic Lockstep:
the good

 elegant and simple! 
 minimal bandwidth needed

 only sent data = controls
 compact! (e.g. a bitmask)

 does not depend on complexity of virtual environment
 cheating: inherently limited

 but a few ways to cheat are still possible,
e.g.:
 aimbots (unlawful assist from AI)
 x-rays (unlawful reveal of info to player)

 mixes well with:
 non-cheating AI, replays, player performance recording…

 can use simple TCP connections
 because we need 0% packet loss anyway (but…)

25

26

3D Video Games
11: Networking 3D Games

2020-06-01

Marco Tarini
Università degli studi di Milano 14

Deterministic Lockstep:
can as well use TPC instead of UDP ?

 why yes:
 TPC is so simple!

 takes care of everything
 works well, when no packet loss

 (with loss, we need resend it anyway: let TPC do that)
 makes little sense to use UDP and then…

try to re-implement all TPC over it
 at the beginning of dev,

UDP is a (premature) optimization
 why not:
 to degrade better with lost packets
 e.g.: use redundancy – instead of resend-on-failure

 controls are small: send 100+ controls in every packet
 keep resending until ack received

Deterministic Lockstep

 Common, e.g., in:
 RTS

 controls = orders
 can be fairly complex
 but game status =

much more complex

 first generation FPS
 controls =

[gaze dir + key status]

Doom ID-soft, 1998…why not anymore?

Command and Conquer
EA / Westmany et al
1995..2012

Starcraft Blizzard 1998-2015

Age of Empires
Ensemble Studios et al,
1998..2015

27

29

3D Video Games
11: Networking 3D Games

2020-06-01

Marco Tarini
Università degli studi di Milano 15

Deterministic Lockstep
(on peer-to-peer): the bad
 responsiveness:

 input-to-response delay of 1 x delivery time (even locally!)
 (you cannot act immediately even on your own local input)

 does not scale with number of players
 quadratic number of packets
 2P ok, 100P not ok

 input rate = packet delivery rate
 delivery rate = as fast as the slowest connection allows
 connection problems (anywhere): everybody freezes!
 joining ongoing games: difficult

 needs sends full game state to new player
 assumes full agreement on initial conditions

 ok, that is fairly easy to get
 assumes complete determinism!

Determinism: traps

 Pseudo-Random?  not dangerous
 fully deterministic (just agree on the seed)

 Physics: many preclusions and traps
 variable time step? bad
 time budgeting? bad
 hidden threats:

order of processing of particles/constraints
 anything that depends on clock?
 poison to determinism

 GPU computations? very dangerous
 slightly different outcome on each card

 floating point operations?
 many hidden dangers,

e.g. different hardwired implementations
 best to assume very little (fixed point is much safer)

 NOTE: 99.999% correct == not correct
 virtual world is faithful to reality enough to be chaotic  butterfly effect:

the tiniest local difference == completely different outcomes soon

The entire game system
must be designed
from the start with
“determinism” in mind …

…and it still difficult to get
(and debug)

30

31

3D Video Games
11: Networking 3D Games

2020-06-01

Marco Tarini
Università degli studi di Milano 16

Model: Peer-to-Peer
Network topology: Fully Connected

Peer A

Peer C

Peer B

Peer D

Model: Client / Server
Network topology: star

Client A

Client C

Client B

Client D

Game
Server

32

33

3D Video Games
11: Networking 3D Games

2020-06-01

Marco Tarini
Università degli studi di Milano 17

Deterministic lockstep
with Star-shaped network

 Server sits on central node
 Protocol
 Each client sends his controls to server
 Server collects all controls and sends back to clients

 Advantage:
 scalability:

number of packets becomes linear (not quadratic)
 Cost:
 responsiveness:

latency = 2 x delivery time :-O
 Bonus: the server can now be made authoritative
 Many new options available. For example…

hurts
gameplay!

“Server is the man”
(authoratitative server)

 The server: it has the last word
 For example:
 Packet loss from player 3?

Server makes up control for player 3
(instead of waiting for them)

 Note: server defines what player 3 eventually did,
not player 3 itself!

 i.e. clients take server’s word even for its own actions
 Packet loss affects one player only

34

35

3D Video Games
11: Networking 3D Games

2020-06-01

Marco Tarini
Università degli studi di Milano 18

Client-Server

Client A

Client B

Game
Server

“Game-Status Snapshots”
paradigm

1

Client A

Client B

2

2

1

Game
Server

Physics / AI

36

37

3D Video Games
11: Networking 3D Games

2020-06-01

Marco Tarini
Università degli studi di Milano 19

Game-Status Snapshots

 Client:
 just a remote visualizer

of the current status
 status is “read only”

 (+ remote input collector)

 Server:
 computation of the

evolving status
 (including physics)

 it’s where
the “real game” runs

Game-Status Snapshots

 Client:
 connected:

to server only
 captures input
 sends controls
 receives game status

 or relevant portions of it

 renders it
 using all relevant assets

 Server
 connected:

to all players
 receives all controls

 (missing? doesn’t matter)

 updates game status
 physical simulations, etc

 sends current status
 to all

Physics,
cosmetic
effects only

Physics
Graphics

UISounds
AI

39

40

3D Video Games
11: Networking 3D Games

2020-06-01

Marco Tarini
Università degli studi di Milano 20

Game-Status Snapshots

 the gains:
 determinism: no longer needs be assumed
 joining ongoing games: trivial now
 packet loss: bearable (hurts the player only)

 to profit: UDP
 slower connection: bearable (affects that player only)

 the losses:
 packet size: a lot bigger!

 optimizations, to counter this:
 compress world status
 send to each client only the portions which interest its player

 responsiveness:
from input to effect = delivery time :-(
from input to visual = 2 x delivery time :-O hurts

gameplay!

Game-Status Snapshots

PLAYER 1 SERVER

Physics / AI

FIRE BUTTON PRESSED

WEAPON HAS FIRED

total lantency

41

42

3D Video Games
11: Networking 3D Games

2020-06-01

Marco Tarini
Università degli studi di Milano 21

Game-Status Snapshots

PLAYER 1 SERVER

FIRE BUTTON PRESSED

WEAPON HAS FIRED

total lantency

Game-Status Snapshots:
with Interpolation: the idea

 World “Snapshot” contains:
 data needed for 3D rendering:

(position-orientation of objects, plus anything else needed)
 Problem:

 large snapshot size! (even with optimizations)
 ==> few FPS (in the physical simulation)
 ==> “jerky” animations

 Solution 1: client-side interpolation
 client keeps last two snapshots in memory

 last received one + the previous one
 interpolates between them,

 client lags behind server by even more!
 gain: smoothness (high FPS with low packet - rate)
 loss: responsiveness (increased latency) oh noes!

43

44

3D Video Games
11: Networking 3D Games

2020-06-01

Marco Tarini
Università degli studi di Milano 22

Game-Status Snapshots:
with Extrapolation: the idea

 World “Snapshot” contains:
 data needed for 3D rendering:

(position-orientation of objects, plus anything else needed)
 Problem:

 large snapshot size! (even with optimizations)
 ==> few FPS (in the physical simulation)
 ==> “jerky” animations

 Solution 2: client-side extrapolation
 clients keeps last two snapshots in memory

 last received one + the previous one
 extrapolates between them, i.e. shows the expected “future”

 i.e. it shows an attempted prediction to the next snapshot
 NOTE: this prediction is often wrong: glitches.

 gain: responsiveness
 loss: accuracy - lots of glitches. :-(

Client-side Game Evolution
(aka distributed physics): the idea
 Each client:

 in charge for game evolution
 including physics

 communicates to others
a reduced game-status snapshot
 describes only status of own player

(e.g. positions + ori, its flying bullets)
 receives other partial snapshots
 merges everything up

 (updates statuses of other players)
 Simple, zeroed latency

 immediately responsive to local player controls
 remote agents updated according to “what their client says”

 Problem: can still need determinism
 (who keeps NPCs / environment in sync?)

 Problem: authoritative clients : prone to cheating!!!

to server,
or , in a P2P network,
to each other peers

45

46

3D Video Games
11: Networking 3D Games

2020-06-01

Marco Tarini
Università degli studi di Milano 23

Client-Side Prediction:
the idea

 Client:
 get Commands from local inputs
 sends Commands to Server
 computes game evolution (the prediction)

 maybe “guessing” other players commands (which it ignores)
 zero latency!

 Server:
 receives Commands (from all clients)
 computes game evolution (the “reality”)

 “Server Is The Man” - Tim Sweeney (Unreal Engine, EPIC)
 prevents cheating!

 sends Snapshot back (to all clients)
 Client:

 receives Snapshot (the “real” game status)
 corrects its prediction, if needed

Client-Side Prediction:
correction from the server

 The server-side “real” simulation
lives k msecs in the past
of the client-side “predicted” one
 k = deliver time
 remember: virtual time != real world time

 When server correction arrives to client,
it refers to 2k msecs ago (for the client)

 Q: how to correct… the past?

47

48

3D Video Games
11: Networking 3D Games

2020-06-01

Marco Tarini
Università degli studi di Milano 24

Client-Side Prediction

t=0

t=0

keypress

t=1

t=2

t=3

t=4

t=5

t=1

PLAYER 1 SERVER

Client-Side Prediction

t=0

t=1

t=2

t=3

t=0

t=1

t=4

t=5

t=2

t=3

t=4

PLAYER 1 SERVER

49

50

3D Video Games
11: Networking 3D Games

2020-06-01

Marco Tarini
Università degli studi di Milano 25

Client-Side Prediction:
correction from the server

 Q: How to correct… the past?
 A:
 keep last N statuses in memory

 including own controls
 “real” status (the correction) of the past

arrives from server
 compare it with corresponding past status:

 does it match?
nothing to do

 does it mismatch?
discard frame and following ones,
rerun simulation to present (reusing stored controls)

Re-running physical simulation

 Just need to catch up with the present
 Physics and AI only… at full speed
 no graphics, no sound rendering,

no cosmetic particle system…
 Can use larger dt if necessary
 Compromises accuracy

 Must reuse same controls of own player
 Which are also cached

 Note: player is never shown these intermediate
steps. Only the final result

 Glitches when going from current present to
a different (corrected) present

51

52

3D Video Games
11: Networking 3D Games

2020-06-01

Marco Tarini
Università degli studi di Milano 26

Client-Side Prediction:
correcting the past

t=10 t=11 t=12 t=13 t=14

now

t=11

PLAYER 1 SERVER

=?=

Client-Side Prediction:
correcting the past

t=10 t=11 t=12 t=13 t=14

now

t=11 t=12 t=13 t=14

PLAYER 1 SERVER

=/=

53

54

3D Video Games
11: Networking 3D Games

2020-06-01

Marco Tarini
Università degli studi di Milano 27

Client-Side Prediction:
what causes mispredictions?

 Lack of determinism
 e.g. physics was approximated – “soft real time”
 see above for more possible causes of this
 (minor/rare issue)

 Didn’t account that own controls were
not received by server (in time)
 server: “actually, you didn’t jump, back then”
 authoritative server – server defines the truth,

(even when the client is in a better position to know)
 (minor/rare issue)

 Didn’t account for other players’ controls
 (the biggest issue)

 Note: none of the above breaks the game (hopefully)
 it just causes minor / temporary glitches (maybe)

Client-Side Prediction:
optimizations 1/2

 reduce snapshots size
(==> to increase packet frequency)
 partial snapshots: refresh more often the parts

which are most likely to be predicted wrong /
or which changed

 drastic space reductions!
 but make sure that every part is eventually refreshed

 reduce correction computation
(==> so to make corrections quicker)
 partial physic steps:

update only the parts affected by the error
 use bigger dt (fewer steps to get to present)

55

56

3D Video Games
11: Networking 3D Games

2020-06-01

Marco Tarini
Università degli studi di Milano 28

Client-Side Prediction:
optimizations 2/2

 tentatively predict also unknown data
(==> so to reduce correction frequency)
 e.g. also predict other player’s controls
 easiest prediction: players do what they did last frame

 trigger correction only when status differ enough
(==> so to reduce correction frequency)
 e.g. when any spatial position difference > epsilon
 tolerate small discrepancies
 (warning: discrepancies tend to explode exponentially with

virtual time – because Chaos)

Client-Side Prediction:
notes

 A snapshot = includes physical data
 (not just for the 3D rendering, also to update physics)
 can be small, when optimized!

  No latency: immediately react to local input
 client proceeds right away with next frame
 when prediction is correct: seamless illusion
 otherwise: (minor?) glitches

  Determinism: not assumed
  Cheating: not easy (server is authoritative)

57

58

3D Video Games
11: Networking 3D Games

2020-06-01

Marco Tarini
Università degli studi di Milano 29

Summary : rules of thumb

 How to choose the network layout
 peer-to-peer :

  reduced latency
  quadratic number of packages

(with number of players)

 client-server :
  doubled latency
  linear number of packages

(with number of players)
 REQUIRED, for any solution with authoritative server
 REQUIRED, for num players >> 4

Summary : rules of thumb

 How to choose the network paradigm
 Deterministic Lockstep, if

 determinism can be assumed
 few players (up to 4-5)
 fast + reliable connection (e.g. LAN)

 Game-status Snapshots, if
 game status not overly complex
 a little latency can be tolerated

 Client-side evolution, if
 preventing cheating not important

 Client-side prediction + server correction, if
 game status not overly complex

or, slow paced game

RTS
most common
option !

FPS
most common
option !

59

60

3D Video Games
11: Networking 3D Games

2020-06-01

Marco Tarini
Università degli studi di Milano 30

Summary:
classes of solutions

 Who computes game evolution? (incl. physics)
 deterministic-lockstep : clients

 there may be no server at all: peer-to-peer
 independent computation, same result

 game-status snapshots : server
 clients are just visualizers
 maybe with interpolation / extrapolation

 (distributed physics : both clients and server)
 clients in charge for own agent(s)
 server in charge for env. / NPCs

 client-side predictions : both clients and server
 clients “predict” (just for local visualization purposes)
 server “corrects” (it has the last word!)

Cloud-gaming with video-streaming
(aka game on demand)

1

Client A

Client B

2

2

1

Game
Server

physics rendering

AI
sound
rendering

61

62

3D Video Games
11: Networking 3D Games

2020-06-01

Marco Tarini
Università degli studi di Milano 31

Cloud-gaming with video-streaming

 Client:
 connected: to server only
 captures + sends input
 receives video + audio
 decompresses video

 Server
 connected: to all players
 computes everything

(for each player!)
 compresses video + audio

video-stream
decompression

physics
(+particle fxs)

rendering (+anim)

sound rendering
AI

input collection

video-stream compression

Cloud-gaming with video-streaming
(aka game on demand)

 Compared to game snapshots technique…
 Server now does everything
 3D Physics + AI (same as with Game-Status snapshots)
 3D Rendering (“remote” rendering)

(including animations, particle effects…)
 3D Sound rendering
 Compresses and send 2D video

 Client does almost nothing
 Collects and sends inputs (controls)
 Receives and decompresses 2D video

×N times!
(once for
each player)

63

64

3D Video Games
11: Networking 3D Games

2020-06-01

Marco Tarini
Università degli studi di Milano 32

Cloud-gaming with video-streaming

 Advantages: client is “thin”
 client does (almost) nothing
 client needs nothing (no asset, no storage)
 total: client capabilities can be extremely limited (a pad)

 Challenges:
 Server must be very powerful
 High bandwidth required (high-res video + audio)
 Latency!!! It now includes two-ways trip,

plus compression by server,
plus decompression by client

 Video resolution: now makes thing more difficult

Luckily, video-on-demand
technologies can be reused

Cloud-gaming with video-streaming
(aka game on demand)

 Fast growing technique
 Latency = maybe 80-100 ms
 Is this acceptable?

 Bandwidth = min 25-50 mbits/s
 Will it work for

hard-core games?

(Google)

65

66

