
3D Video Games
12: AI for 3D Games

2020-06-08

Marco Tarini
Università degli Studi di Milano 1

3D Videogames 2018/2019
Univ. degli Studi di Milano

Rendering in games
Part I: lighting & materials

Course Plan

lec. 1: Introduction 
lec. 2: Mathematics for 3D Games 

lec. 3: Scene Graph 
lec. 4: Game 3D Physics  + 
lec. 5: Game Particle Systems ◗
lec. 6: Game 3D Models 
lec. 7: Game Textures
lec. 8: Game 3D Animations ◗
lec. 9: Game 3D Audio 
lec. 10: Networking for 3D Games
lec. 11: Artificial Intelligence for 3D Games 
lec. 12: Game 3D Rendering Techniques

1

2

3D Video Games
12: AI for 3D Games

2020-06-08

Marco Tarini
Università degli Studi di Milano 2

Rendering (in general)

3D scene Imagerendering

screen buffer
(array 2D di pixel)

Rendering in 3D games

 Real time
 (20 o) 30 o 60 FPS

 Hardware (GPU) based
 pipelined, stream processing

 therefore: one class of algorithms (hardwired)
 rasterization based algorithm
 recent trend: switch to ray-tracing algorithms?

 Complexity:
 Linear with # of primitives
 Linear with # of pixels

3

4

3D Video Games
12: AI for 3D Games

2020-06-08

Marco Tarini
Università degli Studi di Milano 3

This lecture and the next:
a bird-eye view on…

 Graphic Hardware & HW based rendering
 a brief summary

 Lighting
 Local Lighting

 Lighting equations notes
 Lighting environments
 Materials

 Strategies to approximate Global Lighting
 Ad-hoc rendering techniques used in games
 Multi-pass techniques in general
 Screen space techniques in general
 A summary of a few common game rendering techniques

This lecture

To learn more, see courses:
 GID

Grafica & Immagini Digitali
(the basis of 3D modelling and rendering)

 RTGP
Real-Time Graphics Programming
(advanced algorithms)

5

6

3D Video Games
12: AI for 3D Games

2020-06-08

Marco Tarini
Università degli Studi di Milano 4

Reminder

7

BUS

CPU

ALU

(central)

RAM

Disk

Scheda video

…bus interno
(scheda video)

RAM
(sch. video)

GPU

A triangle

x

y z

𝐯0 = (𝑥0, 𝑦0, 𝑧0)

𝐯1 = (𝑥1, 𝑦1, 𝑧1)

𝐯2 = (𝑥2, 𝑦2, 𝑧2)

7

8

3D Video Games
12: AI for 3D Games

2020-06-08

Marco Tarini
Università degli Studi di Milano 5

GPU pipeline

GPU pipeline –
a very simplified conceptual version

3D vertex
(e.g. of
a mesh)

fragment
process

pixels
finali

fragments
(“wanna be

pixel”)

vertex
process

z x

v0
v1

v2

rasterizer

y

2D screen
triangle

v0
v1

v2

9

12

3D Video Games
12: AI for 3D Games

2020-06-08

Marco Tarini
Università degli Studi di Milano 6

Rasterization based rendering:
what is done in each step (examples)

 Per vertex: (vertex shader)
 projection (transform from object space to screen space)

 skinning (transform from rest pose to current pose)

 Per triangle: (rasterizer)
 rasterization
 interpolation of any per-vertex data

 Per fragment: (fragment shader)
 lighting (from normal + lights + material to RGB)

 texturing (textures are accessed)

 alpha kill (fully transparent fragment – or almost – are removed)

 Per pixel: (after the fragment shader)
 depth test (occluded pixels are removed)

 alpha blend (semi-transparent fragments are mixed with background)

GPU pipeline – bottlenecks
(notes and terminology)

 Like in any pipeline, the process goes as slow as its slower stage
 The «bottleneck» of the pipeline determines the total speed
 Any other stage is idle for for part of the time (idle is always a waste)

 stages before the bottleneck are «chocked»
(cannot produce output because next stage is not ready)

 stages after it are «starved» (they don’t receive input from prev stage)
 Bottleneck terminology: (in CG)

 If the bottleneck is per vertex, the app is goemetry-limited
(it cannot process «geometry» fast enough)

 If the bottleneck is per fragment, the app is fill-limited
(it cannot fill the buffer with pixel fast enough)

 Performaces (rendering FPS) of a game only impoves
if computational load is removed from the bottleneck phase
 Example:

using all meshes at LOD 1 instead of one does not help a fill limited app
 Example:

reducing the resolution of the screen does not help a geometry-limited app
 Using a simpler lighting model does note help a geometry lmited app

MORE COMMON
CASE, FOR GAMES

13

14

3D Video Games
12: AI for 3D Games

2020-06-08

Marco Tarini
Università degli Studi di Milano 7

Rasterization-Based Rendering

3D
vertices

per
fragment

final
pixels

"fragments"

per
vertex

z x

v0
v1

v2

per
triangle

y

2D triangle
on screen

v0
v1

v2

PROGRAMMABLE!

HARD WIRED

Rasterization-Based Rendering

3D
vertices

per
fragment

final
pixels

"fragments"

per
vertex

z x

v0
v1

v2

per
triangle

y

2D triangle
on screen

v0
v1

v2

The user-defined
"Vertex Shader"
(or vertex program)

The user-defined
"Fragment Shader"

(or pixel program)

15

16

3D Video Games
12: AI for 3D Games

2020-06-08

Marco Tarini
Università degli Studi di Milano 8

Shading languages examples

 High level:
 HLSL (High Level Shader Language, Direct3D, Microsoft)
 GLSL (OpenGL Shading Language)
 CG (C for Graphics, Nvidia)

 Low lever:
 ARB Shader Program

(the “assembler” of GPU – now deprecated)

Lighting

17

18

3D Video Games
12: AI for 3D Games

2020-06-08

Marco Tarini
Università degli Studi di Milano 9

Local lighting

LIGHT

EYE
OBJECT

reflection
(BRDF)

Local lighting

Material
parameters
(data modelling
the «material»)

Illuminant
(data modelling

the Lighting
Environment)

Geometric data
(e.g. normal,
tangent dirs,
pos viewer)

LO
CAL

LIG
H

TIN
G

final
R, G, B

the lighting
equation

19

20

3D Video Games
12: AI for 3D Games

2020-06-08

Marco Tarini
Università degli Studi di Milano 10

Lighting equations

 Different equations can be employed…
 Lambertian
 Blinn-Phong
 Beckmann
 Heidrich–Seidel
 Cook–Torrance
 Ward (anisotropic)
 …
 + additional Fresnel effect

 Varying levels of
 computational complexity
 realism

 some are physically based, some are… just tricks
 material parameters required
 richness / varyety of effects

the basic model, historically used in games for decades

Local lighting

Material
parameters
(data modelling
the «material»)

Illuminant
(data modelling

the Lighting
Environment)

Geometric data
(e.g. normal,
tangent dirs,
pos viewer)

LO
CAL

LIG
H

TIN
G

final
R, G, B

(the lighting
equation)

Material
parameters
(data modelling
the «material»)

21

22

3D Video Games
12: AI for 3D Games

2020-06-08

Marco Tarini
Università degli Studi di Milano 11

Materials

Terminology:
«material» can mean 2 different things
 The material model, i.e. the material parameters
 a part of the input of the (local) lighting equation
 the part that models the (local) optical behavior

of a physical substance (plastic, wood)
 The material asset
 a common abstraction used by game engines / dataset
 an asset which combines:

 a set of textures (e.g. diffuse + specular + normal map)
 a set of shaders (e.g. vertex + fragment)
 a set of global parameters (e.g. glossiness, ambient factors)
 a set of rendering settings

(e.g. back-face culling ON/OFF, or flags based on rendering order)
 Basically, it corresponds to the status of the rendering engine

when a mesh is drawn

23

24

3D Video Games
12: AI for 3D Games

2020-06-08

Marco Tarini
Università degli Studi di Milano 12

Material Asset = status of renderer
To render a mesh: (reminder)

 Load…
 make sure all data is stored in GPU RAM

 Geometry + Attributes
 Connectivity
 Textures
 Shaders
 Material Glob. Param.
 Rendering Settings

 …and Fire!
 issue the draw call (the command: “do it!”)

THE MESH ASSET

THE MATERIAL ASSET

Material models:
which parameters?

 Q: which set of parameters is a «material»?
 A: it is determined by the chosen lighting equation

 regardless of the answer,
each parameter in the set can be stored:
 per Material Assets, as a global parameter, or
 per Vertex of a Mesh, as attributes, or
 per Texel of a texture sheet (maximal freedom)

the arguments of the lighting equation
accounting for the physical substance

that the surface is made of
material =

25

26

3D Video Games
12: AI for 3D Games

2020-06-08

Marco Tarini
Università degli Studi di Milano 13

The most simple choice for
Material-model & lighting-equation:

 see: “OpenGL material”, or OBJ material
 This Lighting Equation is the sume of 4 simple terms:

 Ambient + Diffuse + Specular (+ Emission)

 The material is… a color multiplier for each term,
therefore:
 “Ambient” color (RGB)
 “Diffuse” color (aka “Base Color”, aka “Albedo”)
 “Specular” color (RGB)
 plus one “Specular Exponent”, aka “glossiness” or “shininess”

(an in > 1, often, max = 127)
 “Emission” factor (RGB)

(only for stuff emitting light – otherwise 0,0,0)

separate multiplier for R, G and B

A very basic lighting equation
(basic or «Phong» lighting equation)

 Sum of 3 terms:

finalambient diffuse
(or “Labertian”)

specular
(or “Phong”)

++ =

(a constant additional term (“emission”) is added only for objects emitting light)

27

28

3D Video Games
12: AI for 3D Games

2020-06-08

Marco Tarini
Università degli Studi di Milano 14

A very basic lighting equation:
diffuse term (aka «Lambertian»)

 In formulas:
component-wise
product

light-color

diffuse-color

light direction

dot product
but zero if negative!

𝑛ො ȉ 𝐿෠

𝑑ୖ

𝑑ୋ

𝑑୆

⊗

𝑙𝐿ୖ

𝑙𝐿ୋ

𝑙𝐿୆

material parameter

light parameter

geometry

surface normal

See CG course for an explaination!

A very basic lighting equation:
diffuse term (aka «Lambertian»)

 info:
 it’s physically based
 exhibited by dull materials

(e.g. plasters, untreated wood)
 still used in any lighting equation

 material parameter used:
 base color, aka albedo (when grayscale),

aka diffuse color, aka Lambertian color, sometimes just color
 the texture to specify it is called diffuse-map

aka color map or just RGB map

implementation note: (applies to all formulas)
the versors in the dot-product must be in the same space! -- e.g. object space or world space

29

30

3D Video Games
12: AI for 3D Games

2020-06-08

Marco Tarini
Università degli Studi di Milano 15

A very basic lighting equation:
specular term (aka «Blinn-Phong»)

 In formulas:
component-wise
product

light-color

specular-color

“half-way” versor:

dot product
but zero if negative!

𝑛ො ȉ 𝐻෡
ா

l𝑠ୖ

l𝑠ୋ

l𝑠୆

⊗

𝑙𝐿ୖ

𝑙𝐿ୋ

𝑙𝐿୆

material parameter

light parameter

geometry

surface normal

𝐻෡ = mix(𝑉෠ , 𝐿෠ , 0.5)

view direction
(toward the light)

light direction

specular exponent

A very basic lighting equation:
specular term (aka «Blinn-Phong»)
 info:

 it’s just a trick
 not physically based

(not even energy conserving)
 add simulated reflections (highlights)

 additional material parameters:
 specular color

determines the intensity and color of the highlight
sometimes: diffuse color x a constant
often > 1 – oversaturated highlight

 specular exponent (aka glossiness)
determines the SIZE of the highlight
larger numbers  smaller highlight

 textures:
 specular map and glossiness map
 e.g. in a 4 channel texture: RGB + glossiness

31

32

3D Video Games
12: AI for 3D Games

2020-06-08

Marco Tarini
Università degli Studi di Milano 16

A very basic lighting equation:
ambient term

 In formulas:
component-wise
product

light-color

ambient-
color

l𝑎ୖ

l𝑎ୋ

l𝑎୆

⊗

𝑙𝐿ୖ

𝑙𝐿ୋ

𝑙𝐿୆

material parameter

light parameter

geometry

A very basic lighting equation:
ambient term

 info:
 based on the assumption: a bit of light

reaches the object from every direction
(e.g. from light bounces, or unmodelled
light sources)

 important: without it, things not directly
by lights are black! (e.g. negative cross verify)

 Very simple to compute, so why not
 additional material parameters:

 ambient color – usually very small
 usually, it’s just the diffuse color times a constant (<1)
 the constant occludes (negates the ambient)

and is called Ambient Occlusion
 textures:

 AO map (stores AO terms)
 other common solutions: store AO in vertices, and SSAO (see later)

33

34

3D Video Games
12: AI for 3D Games

2020-06-08

Marco Tarini
Università degli Studi di Milano 17

Baking AO map for a model

AO map (baked)
NOTE: requires UV unwrapping (injective),
like most baked textures

Hidden:
low AO factor
(dark)

Exposed
high AO-factor

Problem with the
basic material model

 Not very expressive
 Made-up (exp specular component)

i.e. not realistic

35

36

3D Video Games
12: AI for 3D Games

2020-06-08

Marco Tarini
Università degli Studi di Milano 18

Choice of material models:
Chapter 1 (’90s)

not too expressive 

Still used (sometimes).
MTL files (OBJ file format) is basically this.

Choice of material parameters:
Chapter 1 (’90)

not too expressive 

Still used (sometimes).
MTL files (OBJ file format) is basically this.

37

38

3D Video Games
12: AI for 3D Games

2020-06-08

Marco Tarini
Università degli Studi di Milano 19

Choice of material models:
Chapter 2 (’00s)

 The Lighting Equation becomes more complex
 more terms are added

 It feeds more material parameters…
 Such as: Fresnel effect, Anisotropic effect,

Reflectivity – with environment maps, …
 Authoring materials

becomes an increasingly complex, and ad-hoc task
 Difficult to port one material ...

 …from one engine to another, …from one game to another,
…from one asset to another

 Difficult to guess the right parameters for a given object
 especially if it has to look good

under widely different lighting conditions

the task of the
“material artist”

Much wider expressiveness

39

40

3D Video Games
12: AI for 3D Games

2020-06-08

Marco Tarini
Università degli Studi di Milano 20

Material models improving

indie 2006 indie 2010

Material models are improving

Triple A – 2015 (PBM!)

41

42

3D Video Games
12: AI for 3D Games

2020-06-08

Marco Tarini
Università degli Studi di Milano 21

Choice of material models:
Chapter 3 (’10s)
 Physically Based Materials (PBM)
 an ongoing trend!

 General characteristics and objectives:
 increased intuitiveness:

 provide Material Artist with a higher-level material description
 eases the Material Authoring task

 increased standardization:
 makes materials more cross-engine / portable (almost)

 increased generality:
 accommodates for most established, modern lighting eq. terms,

and lighting environment description (e.g. env maps)
 increased realism / quality:

 more faithful, physically justified model of real-world materials
 result: material can even be captured from real-world samples
 result: good-looking results under widely different lighting env

«Physically Based Materials»
(PBM)

 Current popular choice of parameters:
 Base color (rgb – or “diffuse”, same as old school)

 Specularity (scalar – or rgb sometimes)

 “Metallicity” (scalar)

 Roughness (scalar)

im
a

g
e

s:
 u

n
re

a
l e

n
g

in
e

 40.0 1.0

0.0 1.0

M
E

T
A

L=
1

M
E

T
A

L=
0

43

44

3D Video Games
12: AI for 3D Games

2020-06-08

Marco Tarini
Università degli Studi di Milano 22

«Physically Based Lighting»
(PBL)

 A lighting model accepting, as input, a PBM
 note: this can be achieved with different equations

 Also, a lighting model taking fewer shortcuts than
otherwise typical
 Before PBM this shortcut was common. Instead of:

 diffuse color: one texture
 baked AO: a separate texture

 Use one texture:
 diffuse color × baked AO : one texture (cheaper!)

 Objectives: same as PBM (exp. under “realism”)
 Warning: PBM & PBL are, basically, buzzwords 

Next: modelling
the Light environment

Material
parameters
(data modelling
the «material»)

Illuminant
(data modelling

lighting
environment)

Geometric data
(e.g. normal,
tangent dirs,
pos viewer)

LO
CAL

LIG
H

TIN
G

final
R, G, B

(the lighting
equation)

Illuminant
(data modelling

the Lighting
Environment)

45

46

