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Course Plan

lec.  1: Introduction  
lec.  2: Mathematics for 3D Games 

lec.  3: Scene Graph 
lec.  4: Game 3D Physics  + 
lec.  5: Game Particle Systems ◗
lec.  6: Game 3D Models 
lec.  7: Game Textures
lec.  8: Game 3D Animations ◗
lec.  9: Game 3D Audio 
lec. 10: Networking for 3D Games
lec. 11: Artificial Intelligence for 3D Games 
lec. 12: Game 3D Rendering Techniques

Modelling 
the Light environment

Material
parameters
(data modelling
the «material»)

Illuminant
(data modelling

lighting
environment)

Geometric data
(e.g. normal, 
tangent dirs,
pos viewer)
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H
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G

final
R, G, B

( the lighting
equation )

Illuminant
(data modelling

the Lighting 
Environment)
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Illumination environments:
types

 Discrete
 a finite set of individual light sources

(plus a global ambient factor)

 Densely sampled
 environment maps: 

textures sampling incoming light

 Basis functions
 a spherical function stored as 

spherical harmonics coefficients

Also used jointly!

Illumination environments:
discrete
 a finite set of individual “light sources”…

 few of them (usually 1-16)
 each one sitting in a node 

of the scene-graph
 each of a type:

 point light sources 
 have: position

 spot-lights
 have: position, 

orientation, wideness (angle)
 directional light sources 

 have: orientation only
 extra per light attributes:

 color / intensity
 fall-off function (with distance)
 max range, and more
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Illumination environments:
discrete

 a finite set of “light sources”…
 ...plus, one global “ambient light” factor

 models other minor light sources + bounces
 light incoming from every direction at every position

 multiplier of the ambient term 
of the lighting equation

 examples: 
 in an overcast outdoor scene: high 

 (dim shadows, flat looking lighting: 
every photographs’ favorite for portraits!)

 in realistic outer space: zero
 in any other scenes : something in between

(e.g. sunny day, or torch lit cave)

Illumination environments:
discrete

 Pros: 
 simple to position /  reorient individual light sources

 both at design phase, or dynamically (at game exec)
 quite faithfully model of certain illuminants, e.g.

 explosions (positional lights) 
 car lights (spot-lights lights) 
 sun direction (directional light)

 relatively easy to compute (hard, soft) shadows for them 
 Cons:

 each discrete light requires extra processing … for each pixel!
 therefore: hard limit on their number. Prioritize
 therefore: are often given a (physically unjustified) radius of effect

 the don’t model well: 
 area light sources (e.g. from back-lit clouds)
 reflections on (metal) objects

see 
shadow
map
later

main illuminants
of the scene!

51

52



3D Video Games                                
12: AI for 3D Games

2020-06-08

Marco Tarini                                   
Università degli Studi di Milano 4

Illumination environments:
densely sampled

 A light intensity / color from each direction d

 Asset to store that: 
“Environment map” texture

Illumination environments:
densely sampled

 Latitude/longitude format
(of a unit vector d )

𝜃

180°-180°

90°

-90°

𝜑

𝜑

𝜃

d

𝑥

𝑦

𝑧
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Illumination environments:
densely sampled
 Also “sky-map” texture

 when it’s only / predominantly the sky to be featured
 doubles as textures for “sky boxes”

Illumination environments:
densely sampled

 Environment map: (asset)
a texture with a texel t for each direction d
 texel t stores the light coming from direction d

 Q: how to find 𝑢, 𝑣 position of t for a given d ?
 i.e. how to parametrize (flatten) the unit sphere

 Different answers are possible…

latitude/longitude format mirror sphere format cube-map format
(ad hoc HW support!)

unit vector
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Environment map (asset)

 A texture with a texel t for each direction d
 texel t stores the light coming from direction d

 Used to compute reflections (on curved objects)
 Pro:

 realistic, complex, detailed, hi-freq, light environments
 best result for mirroring (e.g. shiny metal, glass, water) materials

 can be captured from reality
 Con:

 expensive 
 storage cost, lighting computation cost

 hard for the engine to dynamically change
 easy, for static environments only

Lighting env in the scene graph

world

B

E F
G

T0 T1
T2

T3

T4
T5

T6

DC

H

L

T7

Env map
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Illumination environments:
the Basis Functions way

 Lighting environment:
a continuous function  

 Where 𝑓(𝑣ො) = amount of light 
coming from direction 𝑣ො

 Store 𝑓 through basis functions

𝑓 𝑣ො = 𝑎, ȉ 𝑓, 𝑣ො + 𝑎ଵ,ିଵ ȉ 𝑓ଵ,ିଵ 𝑣ො + 𝑎ଵ, ȉ 𝑓ଵ, 𝑣ො + 𝑎ଵ,ାଵ ȉ 𝑓ଵ,ାଵ 𝑣ො + ⋯

set of all unit vectors
(i.e. surface of the unit sphere)

or R3 if RGB
colored light

a few scalar values to be stored, in order to model 𝑓

fixed spherical “basis” functions (always the same ones)

Illumination environments:
with basis functions

𝑓, 𝑣ො

𝑎

𝑏
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Illumination environments:
with basis functions

 Spherical Harmonics (SPH) in brief:
 store Illumination Env as a small number (1,4,9,16…) of 

scalar weights of as many fixed 
spherical basis functions.

 Pros:
 very compact
 models continuous function well: smooth environments
 allows for efficient computation of the Lighting equation

 Cons:
 continuous functions ONLY

 Bad for hi-freq details, e.g. no hard lights
 not much variations (unless very many coefficient used)

 Often good for background lights

Light probes
(position-dependent lighting env)

 A light probe == a (precomputed) lighting evn to be 
used near a given (xyz) position of the scene

 Light Probe lighting: 
 preprocessing: disseminate the scene with light probes

 Store them as… low res environment maps
 …or, with  SPH (standard solution)

 at rendering time, for a object currently in pos (xyz), 
use an interpolation of near-by “light probes”
 note: two (or more) SPH function can be interpolated!

(easy: just interpolate the weights)

 Widely used !
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Light probes
(position-dependent lighting env)

Light probes
(position-dependent lighting env)
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Local lighting in brief

Material
properties

(data modelling
the «material»)

Illuminant
(data modelling

the Lighting 
Environment)

Geometric data
(e.g. normal, 
tangent dirs,
pos viewer)

LO
CAL

LIG
H

TIN
G

final
R, G, B

the lighting
equation

Geometric data
(e.g. normal, 
tangent dirs,

pos of viewer)

Reminder: normals

 Per vertex attribute of meshes, 
or stored
in 
normal
maps
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Reminder:
(per vertex) Tangent directions

normal mapping
(tangent space):

requires tangent dirs

«anisotropic»
BRDF:

requires tantent dir

B

In which space to computue
the lighting?

world
space

A
F

G

T0 T1
T2

T3

T4
T5

T6

DC

H

L

T7

TNB
space

view
space

POV

object
space
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Local lighting in brief

LO
CAL

LIG
H

TIN
G

final
R, G, B

( the lighting
equation )

Material
properties

(data modelling
the «material»)

Illuminant
(data modelling

the Lighting
Environment)

Geometric data
(e.g. normal, 
tangent dirs,
pos viewer)

Lighting equation:
how

 Computed in the fragment shader
 most game engines support a good set of choices
 Custom new equations can be programmed in shaders
 optimization: “lift” linear computations to the vertex shader

 Material + geometry parameters stored :
 in textures (for highest-frequency variations inside 1 obj)
 in vertex attributes (smooth variations inside 1 obj)
 as material asset parameters (no variation for 1 obj)
 for example, where are

 diffuse color
 specular color
 normals
 tangent dirs

typically stored?
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How to feed parameters
to the lighting equation

 Hard wired choice of the game engine 
 but sometimes, a complex set of choices in the hand of the dev

 Specialized WYSIWYG game-tools not uncommon
 E.g. in 

Unreal 
Engine 4:

Beyond local lighting

 Local lighting = only 3 things count:
 light emitter(s)
 the infinitesimal part of surface hit by light, i.e.:

 its local material
(i.e. how does it bounces light)
(aka: the BRDF)

 its local shape

 observer position

 Anything else is part of Global lighting 
 The rest of the scene also affects the results
 Global effects are considerably HARDER

global variables / env textures

global variables

interpolated from vertices

sampled from textures

global variables
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Global lighting:
two classes of approaches

 Strategy 1: use local lighting, but feed it a
position-dependent lighting environment
 baked (precomputed) i.e. in preprocessing 

good for static part scenes –
problematic for dynamic scenes / lights 
usually too expensive for every frame

 Strategy 2: ad-hoc rendering techniques
 basically, rendering algorithms that map well to existing 

HW pipeline
 often, multi-pass techniques
 see Part II of this lecture for a summarized list

 The two can be used jointly

3D Videogames 2018/2019
Univ. degli Studi di Milano

Rendering in games
Part II: popular techniques in games
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GPU pipeline – simplified 
even more

3D vertex
(e.g. of 
a mesh)

fragment
process

pixels
finali

fragments
(“wanna be 

pixel”)

transform

z x

v0
v1

v2

rasterizer

y

2D screen 
triangle

v0
v1

v2

basics: Depth buffer 

per
fragment

per 
triangle

Scene
(geometry)

SCREEN BUFFER
per 

vertex

transform rasterize texturing,
lighting,…
+ depth test

DEPTH-BUFFER

+

s c r e e n

by-product
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Depth buffer 
(or Z-buffer) (or depth-map)

 Any rendering producing a screen-buffer …
 Which is sent to the screen

 Also produces a depth-buffer
 as a by product
 it’s used during rendering to deterineocclusions

(what covers what in a scene)
 many algorithms exploit it that!

SCREEN BUFFER A

basics: Double Buffering

B
SCREEN BUFFER B

WIP

Scene
(geometry)
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basics: Double Buffering

SCREEN BUFFER A

A

SCREEN BUFFER B

Scene
(geometry)

WIP

basics: 
Render to Texture

per 
vertex

per 
triangle

v0
v1

v2

GEOMETRY
SCREEN 
BUFFER

TEXTURES

“Render Target”

per
fragment
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SCREEN 
BUFFERTEXTURE

basics: 
Render to Texture

per 
vertex

per 
triangle

v0
v1

v2

GEOMETRY

TEXTURES

“Render Target”

off-screen buffer

per
fragment

basics: 
Render to Texture

per 
vertex

per 
triangle

v0
v1

v2

GEOMETRY TEXTURE

TEXTURES

per 
vertex

per 
triangle

v0
v1

v2

GEOMETRY
SCREEN 
BUFFER

“Render Target”

“Render Target”

other 
accesses

per
fragment

per
fragment
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Multipass rendering techniques 
(general concept)

 1st pass: fill an internal 2D buffer
 i.e. An “off-screen” buffer (a buffer never shown to the user)
 It’s the output of this rendering, i.e.its “render target”
 Normally, the render target is the “screen buffer”

(buffer shown to the screen)
 This technique is aka “render to texture”

 2nd pass: fill the final screen buffer
 Using the just-computed internal buffer as a 2D texture

 Note: efficient because…
 the off-screen buffer is either only write-only (1st pass) 

or read-only (2nd pass). Never both!
 the off-screen buffer is constructed and used in GPU RAM. 

No expensive swap of memory between CPU and GPU!

Example: metallic reflections
of dynamic scenes

per
fragment

per 
triangle

Scene
(geometry)

per 
vertex

transform rasterize texturing,
lighting

1s
t P

AS
S

img by Tze-Yiu Ho

Env-Map
(6 images)

per
fragment

per 
triangle

Scene
(geometry)

per 
vertex

transform rasterize texturing,
lighting
including
reflection
over 
metallic objects

2n
d 

PA
SS Final

Screen-Buffer
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Main rendering algorithms:
two classes of approaches

 Forward rendering
 Deferred shading

 Which approach to use?
 Both are employed by games
 Basilar choice! Implementation of all other rendering 

algorithms changes accordingly.

aka Deferred lighting  (actually, a variation)
aka Deferred rendering  (inappropriate?)

 Forward rendering

Main rendering algorithms:
two classes of approaches

per
fragment

per 
triangle

Scene
(geometry)

SCREEN BUFFER

per 
vertex

Render Target

transform rasterize texturing,
depth test,
etc,
and Lighting
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 Deferred shading

Main rendering algorithms:
two classes of approaches

aka Deferred lighting  (actually, a variation)
aka Deferred rendering  (inappropriate?)

SCREEN BUFFER
Lighting

texturing,
depth test
etc,
and Lighting

A single 
full-screen

quad

per
fragment

2n
d 

PA
SS

Scene
(geometry)

transform rasterize

(multiple) Render Targets

“G-BUFFER”

normals diffuse colors depth 
buffer

per
fragment

per 
triangle

per 
vertex

1s
t P

AS
S

Deferred shading 
 Advantage: 

lighting is computed only actually visible pixels
 it’s a huge saving if large depth complexity (aka overdraw)

and/or lighting complexity – both common in 3D games

 Disadvantage: 
needs a separate buffer for every material parameter 
(or, sometimes, a material index)
 Normal buffer
 Depth bufferBase color buffer,

 Limits range of materials?
 Disadvantage: not very good with semi-transparency
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Ad-hoc rendering techniques
popular in games: a summary

 Shadowing
 shadow mapping
 Screen Space Ambient Occlusion

 Camera lens effects
 Flares
 limited Depth Of Field

 Motion blur
 High Dynamic Range
 Non Photorealistic Rendering

 contours
 lighting quantization

 Texture-for-geometry
 Bumpmapping
 Parallax mapping

SSAO

DoF

HDR

NPR

with PCF

Screen-Space techniques (in general)
(a class of multi-pass techniques)

 1st pass: 
 Render the scene from the same point of view

as the final scene
 Produce: final color buffer, plus a z-buffer

(and/or other auxiliary buffer)
 2nd pass:

 render just one single “full screen” rectangle
 (it filling the entire screens with two triangles)
 for each produced fragment: apply 2D effects to the buffer

 Notes:
 Basically, apply image filters to the rendering.
 Many of the techniques in the previous slides are like this
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Shadow mapping

Shadow mapping
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Shadow-mapping in a nutshell
(a multi-pass technique for shadows)

1st pass: 
 camera in light position
 render all light blockers
 produce a depth buffer only (known as the shadow map)
 (repeat for each discrete light casting a shadow)

2nd pass: 
 camera in final position
 for each fragment,

access the shadow-map,
determine if that
if fragment is visible
by light (or not)

 If not visible,
negate contribution
of that discrete light source

 Result:
 Blockers cast ashadow

Shadow-mapping
concept

EYE
LIGHT

SHADOW
MAP

final
SCREEN
BUFFER
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Shadow mapping:
issues

 Rendering shadow-map:
 Must be redone every time object move
 can be baked once and for all, for static objects only
 (jet another reason to label static objects!)

 Shadow-map resolution:
 it matters! aliasing effects
 remedies: PCF, multi-res shadow-map

optional  topics
(no exam)

Shadow Mapping:
results

 Negates (zeroes) the 
light term of discrete light-sources

 Other light components are still summed 
together…
 Non blocked lights
 Ambient factor
 Background illumination (e.g. from light probes)
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Screen Space AO (SSAO)

Final

SSAO only

Ambient occlusion (AO)

 Cast shadows (computed by shadow-maps) 
negate the light coming from discrete light sources

 “Ambient occlusion”, negates (occludes) the 
“ambient” component of lighting, instead

 Idea: 
 the AO is a factor (between 0 and 1) for each surface point
 AO factor multiples the ambient component for that point
 Intuitively, for a point 𝐩, its AO factor is a measure of how 

much 𝐩 is exposed in the open
 𝐩 is well exposed: AO ≈ 1.0
 𝐩 is hidden, e.g. it is in the bottom of a crack: AO ≈ 0.0

 Exact definition - not in this course. But keep in mind: 
 (1) it is an approximation 
 (2) it is a purely geometrical computation
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Two ways to compute AO:
OSAO  versus  SSAO

 Object Space Ambient Occlusion (OSAO)
 Baked in preprocessing on each mesh
 Stored as a per-vertex attribute OR a texture 

(“AO-map”, or “light-map”)
 Pro: accurate & cheap (during rendering)
 Con: static! Doesn’t reflect current pos of the objects in the scene

 Screen Space Ambient Occlusion (SSAO)
 Screen space technique
 1st pass: compute depth map (maybe normal too)
 2nd pass: compute AO map from the above

(AO factor of each pixel, depends on neighboring depth values)
 Final pass: use AO per-pixel from pass 2
 Pro: dynamic! Reflect current position of objects in the scene
 Con: less accurate

 Can be combined!

Baking AO over a mesh
(OSAO)

Baked AO map

Hidden:
low AO factor
(dark)

Exposed
high AO-factor
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No SSAO

OFF

With SSAO

ON
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Screen Space AO
in a nutshell

 First pass: standard rendering
 produces: rgb image
 produces: depth image

 Second pass: 
screen space technique
 for each pixel, look at depth VS its neighbors:

 neighbors in front? 
difficult to reach pixel: darken ambient

 neighbors behind? 
pixel exposed to ambient light: keep it lit

(limited)
Depth of Field

depth
in focus 
range:
sharpdepth

out of focus 
range:

blurred
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(limited) Depth of Field 
in a nutshell

 Screen space technique:
 1st pass: standard rendering, producing

 RGB image
 Z-buffer

 Second pass: 
 pixel inside of focus range?  Keep in focus
 pixel outside of focus range?  blur

 Blur, way 1 = average with neighbors pixels
kernel size ~= amount of blur

 Blur, way 2 = compute MIP-map of RGB image,
use lower MIP-map level with bilinear interpolation

HDR - High Dynamic Range
(limited Dynamic Range)
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HDR - High Dynamic Range
in a nutshell

 Screen space technique:
 First pass: like a normal rendering, BUT

use lighting / materials with any values
 RGB of final pixel values not in [0..1]
 e.g. sun emits light with  RGB [10.0,10.0,10.0]: 
 If  >1 = “overexposed”! That is, “whiter than white”

 Second pass: 
 Make values >1 bleed over other pixels
 i.e.: overexposed pixels lighten neighbors

Parallax mapping:
in a nutshell

 Texture-for-geometry technique
 Texture used:

 displacement maps
 color / rgb map
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Parallax Mapping

Normal map
only

Parallax Mapping

Normal map
+ Parallax map
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Motion Blur

Non-PhotoRealistic Rendering
(NPR)

 Any rendering technique not aimed at realism
 Instead, the objective can be:

 imitating a given style (imitative rendering),
such as:
 cartoons (“toon shading”)  most popular!
 pen-and-ink drawings
 pencil sketches
 pixel art  popular in nostalgic retro games (niche)
 manga, or, western comics   not uncommon
 pastels, oil paintings, crayons …

 clarity/readability  (illustrative rendering) 
 usually not for games
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Toon shading / Cel Shading

Toon shading / Cel Shading

(tweaked) Team Fortress II – Steam 
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Toon shading / Cell Shading
in a nutshell

 Simulating “toons”
 Two effects:

 add contour lines
 lines appearing at discontinuities of:

1. depth, 
2. normals, 
3. materials

 quantize lighting:
 e.g. 2 or 3 tones: light, medium, dark

instead of continuous
 simple variation of lighting equation

NPR rendering:
e.g.: simulated pixel art

img by Howard Day (2015)
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