
3D Video Games                                
12: AI for 3D Games

2020-06-08

Marco Tarini                                   
Università degli Studi di Milano 1

Course Plan

lec.  1: Introduction  
lec.  2: Mathematics for 3D Games 

lec.  3: Scene Graph 
lec.  4: Game 3D Physics  + 
lec.  5: Game Particle Systems ◗
lec.  6: Game 3D Models 
lec.  7: Game Textures
lec.  8: Game 3D Animations ◗
lec.  9: Game 3D Audio 
lec. 10: Networking for 3D Games
lec. 11: Artificial Intelligence for 3D Games 
lec. 12: Game 3D Rendering Techniques

Modelling 
the Light environment

Material
parameters
(data modelling
the «material»)

Illuminant
(data modelling

lighting
environment)

Geometric data
(e.g. normal, 
tangent dirs,
pos viewer)

LO
CAL

LIG
H

TIN
G

final
R, G, B

( the lighting
equation )

Illuminant
(data modelling

the Lighting 
Environment)
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Illumination environments:
types

 Discrete
 a finite set of individual light sources

(plus a global ambient factor)

 Densely sampled
 environment maps: 

textures sampling incoming light

 Basis functions
 a spherical function stored as 

spherical harmonics coefficients

Also used jointly!

Illumination environments:
discrete
 a finite set of individual “light sources”…

 few of them (usually 1-16)
 each one sitting in a node 

of the scene-graph
 each of a type:

 point light sources 
 have: position

 spot-lights
 have: position, 

orientation, wideness (angle)
 directional light sources 

 have: orientation only
 extra per light attributes:

 color / intensity
 fall-off function (with distance)
 max range, and more
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Illumination environments:
discrete

 a finite set of “light sources”…
 ...plus, one global “ambient light” factor

 models other minor light sources + bounces
 light incoming from every direction at every position

 multiplier of the ambient term 
of the lighting equation

 examples: 
 in an overcast outdoor scene: high 

 (dim shadows, flat looking lighting: 
every photographs’ favorite for portraits!)

 in realistic outer space: zero
 in any other scenes : something in between

(e.g. sunny day, or torch lit cave)

Illumination environments:
discrete

 Pros: 
 simple to position /  reorient individual light sources

 both at design phase, or dynamically (at game exec)
 quite faithfully model of certain illuminants, e.g.

 explosions (positional lights) 
 car lights (spot-lights lights) 
 sun direction (directional light)

 relatively easy to compute (hard, soft) shadows for them 
 Cons:

 each discrete light requires extra processing … for each pixel!
 therefore: hard limit on their number. Prioritize
 therefore: are often given a (physically unjustified) radius of effect

 the don’t model well: 
 area light sources (e.g. from back-lit clouds)
 reflections on (metal) objects

see 
shadow
map
later

main illuminants
of the scene!
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Illumination environments:
densely sampled

 A light intensity / color from each direction d෠

 Asset to store that: 
“Environment map” texture

Illumination environments:
densely sampled

 Latitude/longitude format
(of a unit vector d෠ )

𝜃

180°-180°

90°

-90°

𝜑

𝜑

𝜃

d෠

𝑥

𝑦

𝑧
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Illumination environments:
densely sampled
 Also “sky-map” texture

 when it’s only / predominantly the sky to be featured
 doubles as textures for “sky boxes”

Illumination environments:
densely sampled

 Environment map: (asset)
a texture with a texel t for each direction d෠
 texel t stores the light coming from direction d෠

 Q: how to find 𝑢, 𝑣 position of t for a given d෠ ?
 i.e. how to parametrize (flatten) the unit sphere

 Different answers are possible…

latitude/longitude format mirror sphere format cube-map format
(ad hoc HW support!)

unit vector
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Environment map (asset)

 A texture with a texel t for each direction d෠
 texel t stores the light coming from direction d෠

 Used to compute reflections (on curved objects)
 Pro:

 realistic, complex, detailed, hi-freq, light environments
 best result for mirroring (e.g. shiny metal, glass, water) materials

 can be captured from reality
 Con:

 expensive 
 storage cost, lighting computation cost

 hard for the engine to dynamically change
 easy, for static environments only

Lighting env in the scene graph

world

B

E F
G

T0 T1
T2

T3

T4
T5

T6

DC

H

L

T7

Env map
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Illumination environments:
the Basis Functions way

 Lighting environment:
a continuous function  

 Where 𝑓(𝑣ො) = amount of light 
coming from direction 𝑣ො

 Store 𝑓 through basis functions

𝑓 𝑣ො = 𝑎଴,଴ ȉ 𝑓଴,଴ 𝑣ො + 𝑎ଵ,ିଵ ȉ 𝑓ଵ,ିଵ 𝑣ො + 𝑎ଵ,଴ ȉ 𝑓ଵ,଴ 𝑣ො + 𝑎ଵ,ାଵ ȉ 𝑓ଵ,ାଵ 𝑣ො + ⋯

set of all unit vectors
(i.e. surface of the unit sphere)

or R3 if RGB
colored light

a few scalar values to be stored, in order to model 𝑓

fixed spherical “basis” functions (always the same ones)

Illumination environments:
with basis functions

𝑓௔,௕ 𝑣ො

𝑎

𝑏
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Illumination environments:
with basis functions

 Spherical Harmonics (SPH) in brief:
 store Illumination Env as a small number (1,4,9,16…) of 

scalar weights of as many fixed 
spherical basis functions.

 Pros:
 very compact
 models continuous function well: smooth environments
 allows for efficient computation of the Lighting equation

 Cons:
 continuous functions ONLY

 Bad for hi-freq details, e.g. no hard lights
 not much variations (unless very many coefficient used)

 Often good for background lights

Light probes
(position-dependent lighting env)

 A light probe == a (precomputed) lighting evn to be 
used near a given (xyz) position of the scene

 Light Probe lighting: 
 preprocessing: disseminate the scene with light probes

 Store them as… low res environment maps
 …or, with  SPH (standard solution)

 at rendering time, for a object currently in pos (xyz), 
use an interpolation of near-by “light probes”
 note: two (or more) SPH function can be interpolated!

(easy: just interpolate the weights)

 Widely used !
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Light probes
(position-dependent lighting env)

Light probes
(position-dependent lighting env)
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Local lighting in brief

Material
properties

(data modelling
the «material»)

Illuminant
(data modelling

the Lighting 
Environment)

Geometric data
(e.g. normal, 
tangent dirs,
pos viewer)

LO
CAL

LIG
H

TIN
G

final
R, G, B

the lighting
equation

Geometric data
(e.g. normal, 
tangent dirs,

pos of viewer)

Reminder: normals

 Per vertex attribute of meshes, 
or stored
in 
normal
maps
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Reminder:
(per vertex) Tangent directions

normal mapping
(tangent space):

requires tangent dirs

«anisotropic»
BRDF:

requires tantent dir

B

In which space to computue
the lighting?

world
space

A
F

G

T0 T1
T2

T3

T4
T5

T6

DC

H

L

T7

TNB
space

view
space

POV

object
space

67

68



3D Video Games                                
12: AI for 3D Games

2020-06-08

Marco Tarini                                   
Università degli Studi di Milano 12

Local lighting in brief

LO
CAL

LIG
H

TIN
G

final
R, G, B

( the lighting
equation )

Material
properties

(data modelling
the «material»)

Illuminant
(data modelling

the Lighting
Environment)

Geometric data
(e.g. normal, 
tangent dirs,
pos viewer)

Lighting equation:
how

 Computed in the fragment shader
 most game engines support a good set of choices
 Custom new equations can be programmed in shaders
 optimization: “lift” linear computations to the vertex shader

 Material + geometry parameters stored :
 in textures (for highest-frequency variations inside 1 obj)
 in vertex attributes (smooth variations inside 1 obj)
 as material asset parameters (no variation for 1 obj)
 for example, where are

 diffuse color
 specular color
 normals
 tangent dirs

typically stored?
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How to feed parameters
to the lighting equation

 Hard wired choice of the game engine 
 but sometimes, a complex set of choices in the hand of the dev

 Specialized WYSIWYG game-tools not uncommon
 E.g. in 

Unreal 
Engine 4:

Beyond local lighting

 Local lighting = only 3 things count:
 light emitter(s)
 the infinitesimal part of surface hit by light, i.e.:

 its local material
(i.e. how does it bounces light)
(aka: the BRDF)

 its local shape

 observer position

 Anything else is part of Global lighting 
 The rest of the scene also affects the results
 Global effects are considerably HARDER

global variables / env textures

global variables

interpolated from vertices

sampled from textures

global variables
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Global lighting:
two classes of approaches

 Strategy 1: use local lighting, but feed it a
position-dependent lighting environment
 baked (precomputed) i.e. in preprocessing 

good for static part scenes –
problematic for dynamic scenes / lights 
usually too expensive for every frame

 Strategy 2: ad-hoc rendering techniques
 basically, rendering algorithms that map well to existing 

HW pipeline
 often, multi-pass techniques
 see Part II of this lecture for a summarized list

 The two can be used jointly

3D Videogames 2018/2019
Univ. degli Studi di Milano

Rendering in games
Part II: popular techniques in games
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GPU pipeline – simplified 
even more

3D vertex
(e.g. of 
a mesh)

fragment
process

pixels
finali

fragments
(“wanna be 

pixel”)

transform

z x

v0
v1

v2

rasterizer

y

2D screen 
triangle

v0
v1

v2

basics: Depth buffer 

per
fragment

per 
triangle

Scene
(geometry)

SCREEN BUFFER
per 

vertex

transform rasterize texturing,
lighting,…
+ depth test

DEPTH-BUFFER

+

s c r e e n

by-product
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Depth buffer 
(or Z-buffer) (or depth-map)

 Any rendering producing a screen-buffer …
 Which is sent to the screen

 Also produces a depth-buffer
 as a by product
 it’s used during rendering to deterineocclusions

(what covers what in a scene)
 many algorithms exploit it that!

SCREEN BUFFER A

basics: Double Buffering

B
SCREEN BUFFER B

WIP

Scene
(geometry)
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basics: Double Buffering

SCREEN BUFFER A

A

SCREEN BUFFER B

Scene
(geometry)

WIP

basics: 
Render to Texture

per 
vertex

per 
triangle

v0
v1

v2

GEOMETRY
SCREEN 
BUFFER

TEXTURES

“Render Target”

per
fragment
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SCREEN 
BUFFERTEXTURE

basics: 
Render to Texture

per 
vertex

per 
triangle

v0
v1

v2

GEOMETRY

TEXTURES

“Render Target”

off-screen buffer

per
fragment

basics: 
Render to Texture

per 
vertex

per 
triangle

v0
v1

v2

GEOMETRY TEXTURE

TEXTURES

per 
vertex

per 
triangle

v0
v1

v2

GEOMETRY
SCREEN 
BUFFER

“Render Target”

“Render Target”

other 
accesses

per
fragment

per
fragment
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Multipass rendering techniques 
(general concept)

 1st pass: fill an internal 2D buffer
 i.e. An “off-screen” buffer (a buffer never shown to the user)
 It’s the output of this rendering, i.e.its “render target”
 Normally, the render target is the “screen buffer”

(buffer shown to the screen)
 This technique is aka “render to texture”

 2nd pass: fill the final screen buffer
 Using the just-computed internal buffer as a 2D texture

 Note: efficient because…
 the off-screen buffer is either only write-only (1st pass) 

or read-only (2nd pass). Never both!
 the off-screen buffer is constructed and used in GPU RAM. 

No expensive swap of memory between CPU and GPU!

Example: metallic reflections
of dynamic scenes

per
fragment

per 
triangle

Scene
(geometry)

per 
vertex

transform rasterize texturing,
lighting

1s
t P

AS
S

img by Tze-Yiu Ho

Env-Map
(6 images)

per
fragment

per 
triangle

Scene
(geometry)

per 
vertex

transform rasterize texturing,
lighting
including
reflection
over 
metallic objects

2n
d 

PA
SS Final

Screen-Buffer
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Main rendering algorithms:
two classes of approaches

 Forward rendering
 Deferred shading

 Which approach to use?
 Both are employed by games
 Basilar choice! Implementation of all other rendering 

algorithms changes accordingly.

aka Deferred lighting  (actually, a variation)
aka Deferred rendering  (inappropriate?)

 Forward rendering

Main rendering algorithms:
two classes of approaches

per
fragment

per 
triangle

Scene
(geometry)

SCREEN BUFFER

per 
vertex

Render Target

transform rasterize texturing,
depth test,
etc,
and Lighting
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 Deferred shading

Main rendering algorithms:
two classes of approaches

aka Deferred lighting  (actually, a variation)
aka Deferred rendering  (inappropriate?)

SCREEN BUFFER
Lighting

texturing,
depth test
etc,
and Lighting

A single 
full-screen

quad

per
fragment

2n
d 

PA
SS

Scene
(geometry)

transform rasterize

(multiple) Render Targets

“G-BUFFER”

normals diffuse colors depth 
buffer

per
fragment

per 
triangle

per 
vertex

1s
t P

AS
S

Deferred shading 
 Advantage: 

lighting is computed only actually visible pixels
 it’s a huge saving if large depth complexity (aka overdraw)

and/or lighting complexity – both common in 3D games

 Disadvantage: 
needs a separate buffer for every material parameter 
(or, sometimes, a material index)
 Normal buffer
 Depth bufferBase color buffer,

 Limits range of materials?
 Disadvantage: not very good with semi-transparency
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Ad-hoc rendering techniques
popular in games: a summary

 Shadowing
 shadow mapping
 Screen Space Ambient Occlusion

 Camera lens effects
 Flares
 limited Depth Of Field

 Motion blur
 High Dynamic Range
 Non Photorealistic Rendering

 contours
 lighting quantization

 Texture-for-geometry
 Bumpmapping
 Parallax mapping

SSAO

DoF

HDR

NPR

with PCF

Screen-Space techniques (in general)
(a class of multi-pass techniques)

 1st pass: 
 Render the scene from the same point of view

as the final scene
 Produce: final color buffer, plus a z-buffer

(and/or other auxiliary buffer)
 2nd pass:

 render just one single “full screen” rectangle
 (it filling the entire screens with two triangles)
 for each produced fragment: apply 2D effects to the buffer

 Notes:
 Basically, apply image filters to the rendering.
 Many of the techniques in the previous slides are like this
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Shadow mapping

Shadow mapping
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Shadow-mapping in a nutshell
(a multi-pass technique for shadows)

1st pass: 
 camera in light position
 render all light blockers
 produce a depth buffer only (known as the shadow map)
 (repeat for each discrete light casting a shadow)

2nd pass: 
 camera in final position
 for each fragment,

access the shadow-map,
determine if that
if fragment is visible
by light (or not)

 If not visible,
negate contribution
of that discrete light source

 Result:
 Blockers cast ashadow

Shadow-mapping
concept

EYE
LIGHT

SHADOW
MAP

final
SCREEN
BUFFER
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Shadow mapping:
issues

 Rendering shadow-map:
 Must be redone every time object move
 can be baked once and for all, for static objects only
 (jet another reason to label static objects!)

 Shadow-map resolution:
 it matters! aliasing effects
 remedies: PCF, multi-res shadow-map

optional  topics
(no exam)

Shadow Mapping:
results

 Negates (zeroes) the 
light term of discrete light-sources

 Other light components are still summed 
together…
 Non blocked lights
 Ambient factor
 Background illumination (e.g. from light probes)
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Screen Space AO (SSAO)

Final

SSAO only

Ambient occlusion (AO)

 Cast shadows (computed by shadow-maps) 
negate the light coming from discrete light sources

 “Ambient occlusion”, negates (occludes) the 
“ambient” component of lighting, instead

 Idea: 
 the AO is a factor (between 0 and 1) for each surface point
 AO factor multiples the ambient component for that point
 Intuitively, for a point 𝐩, its AO factor is a measure of how 

much 𝐩 is exposed in the open
 𝐩 is well exposed: AO ≈ 1.0
 𝐩 is hidden, e.g. it is in the bottom of a crack: AO ≈ 0.0

 Exact definition - not in this course. But keep in mind: 
 (1) it is an approximation 
 (2) it is a purely geometrical computation
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Two ways to compute AO:
OSAO  versus  SSAO

 Object Space Ambient Occlusion (OSAO)
 Baked in preprocessing on each mesh
 Stored as a per-vertex attribute OR a texture 

(“AO-map”, or “light-map”)
 Pro: accurate & cheap (during rendering)
 Con: static! Doesn’t reflect current pos of the objects in the scene

 Screen Space Ambient Occlusion (SSAO)
 Screen space technique
 1st pass: compute depth map (maybe normal too)
 2nd pass: compute AO map from the above

(AO factor of each pixel, depends on neighboring depth values)
 Final pass: use AO per-pixel from pass 2
 Pro: dynamic! Reflect current position of objects in the scene
 Con: less accurate

 Can be combined!

Baking AO over a mesh
(OSAO)

Baked AO map

Hidden:
low AO factor
(dark)

Exposed
high AO-factor
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No SSAO

OFF

With SSAO

ON
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Screen Space AO
in a nutshell

 First pass: standard rendering
 produces: rgb image
 produces: depth image

 Second pass: 
screen space technique
 for each pixel, look at depth VS its neighbors:

 neighbors in front? 
difficult to reach pixel: darken ambient

 neighbors behind? 
pixel exposed to ambient light: keep it lit

(limited)
Depth of Field

depth
in focus 
range:
sharpdepth

out of focus 
range:

blurred
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(limited) Depth of Field 
in a nutshell

 Screen space technique:
 1st pass: standard rendering, producing

 RGB image
 Z-buffer

 Second pass: 
 pixel inside of focus range?  Keep in focus
 pixel outside of focus range?  blur

 Blur, way 1 = average with neighbors pixels
kernel size ~= amount of blur

 Blur, way 2 = compute MIP-map of RGB image,
use lower MIP-map level with bilinear interpolation

HDR - High Dynamic Range
(limited Dynamic Range)
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HDR - High Dynamic Range
in a nutshell

 Screen space technique:
 First pass: like a normal rendering, BUT

use lighting / materials with any values
 RGB of final pixel values not in [0..1]
 e.g. sun emits light with  RGB [10.0,10.0,10.0]: 
 If  >1 = “overexposed”! That is, “whiter than white”

 Second pass: 
 Make values >1 bleed over other pixels
 i.e.: overexposed pixels lighten neighbors

Parallax mapping:
in a nutshell

 Texture-for-geometry technique
 Texture used:

 displacement maps
 color / rgb map
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Parallax Mapping

Normal map
only

Parallax Mapping

Normal map
+ Parallax map
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Motion Blur

Non-PhotoRealistic Rendering
(NPR)

 Any rendering technique not aimed at realism
 Instead, the objective can be:

 imitating a given style (imitative rendering),
such as:
 cartoons (“toon shading”)  most popular!
 pen-and-ink drawings
 pencil sketches
 pixel art  popular in nostalgic retro games (niche)
 manga, or, western comics   not uncommon
 pastels, oil paintings, crayons …

 clarity/readability  (illustrative rendering) 
 usually not for games

119

120



3D Video Games                                
12: AI for 3D Games

2020-06-08

Marco Tarini                                   
Università degli Studi di Milano 34

Toon shading / Cel Shading

Toon shading / Cel Shading

(tweaked) Team Fortress II – Steam 
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Toon shading / Cell Shading
in a nutshell

 Simulating “toons”
 Two effects:

 add contour lines
 lines appearing at discontinuities of:

1. depth, 
2. normals, 
3. materials

 quantize lighting:
 e.g. 2 or 3 tones: light, medium, dark

instead of continuous
 simple variation of lighting equation

NPR rendering:
e.g.: simulated pixel art

img by Howard Day (2015)
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