3D Video Games
12: Al for 3D Games

Course Plan
lec. 1: Introduction @
lec. 2: Mathematics for 3D Games @00 0®®
lec. 3: Scene Graph @
lec. 4: Game 3D Physics @@ ® + @@ (
lec. 5: Game Particle Systems P
lec. 6: Game 3D Models @4
lec. 7: Game Textures @ @
lec. 8: Game 3D Animations V@ @
lec. 9: Game 3D Audio @
lec. 10: Networking for 3D Games @
lec. 11: Artificial Intelligence for 3D Games @
lec. 12: Game 3D Rendering Techniques @
47
Modelling
the Light environment
Material Fﬁ:%%M
parameters @«Q%{lﬁ:
(data modelling %_b&_? ?z(u}ﬁ:gf
the «material»)
[lluminant
(data modelling
the Lighting
Environment)
Geometric data
(e.g. normal,
tangent dirs, (the lighting
pos viewer) equation)
48

Marco Tarini

Universita degli Studi di Milano

2020-06-08

3D Video Games
12: Al for 3D Games

Marco Tarini

2020-06-08
p o
lllumination environments: s
types
e Discrete
e a finite set of individual light sources
(plus a global ambient factor)
e Densely sampled
e environment maps:
textures sampling incoming light
e Basis functions
e aspherical function stored as
spherical harmonics coefficients
Also used jointly!
49
., M
lllumination environments: L
discrete
e afinite set of individual “light sources”...
e few of them (usually 1-16)
e each one sitting in a node
of the scene-graph
e each of a type:
e point light sources
e have: position
e spot-lights
e have: position,
orientation, wideness (angle)
e directional light sources
e have: orientation only
e extra per light attributes:
e color /intensity
e fall-off function (with distance)
® maXxrange, and more
50
2

Universita degli Studi di Milano

3D Video Games 2020-06-08
12: Al for 3D Games

. . ey
lllumination environments: LS
discrete

e a finite set of “light sources”...

e ...plus, one global “ambient light” factor
e models other minor light sources + bounces
e light incoming from every direction at every position
e multiplier of the ambient term
of the lighting equation
e examples:

e in an overcast outdoor scene: high

= (dim shadows, flat looking lighting:
every photographs’ favorite for portraits!)

e in realistic outer space: zero

e in any other scenes : something in between
(e.g. sunny day, or torch lit cave)

51
. . Py
lllumination environments: L
discrete
e Pros:
e simple to position / reorient individual light sources
e both at design phase, or dynamically (at game exec)
e quite faithfully model of certain illuminants, e.g.
e explosions (positional lights) main illuminants
e car lights (spot-lights lights) of the scenel! cee
e sun direction (directional light) shadow
e relatively easy to compute (hard, soft) shadows for them map
e Cons: later
e each discrete light requires extra processing ... for each pixel!
e therefore: hard limit on their number. Prioritize
e therefore: are often given a (physically unjustified) radius of effect
e the don’t model well:
e area light sources (e.g. from back-lit clouds)
e reflections on (metal) objects
52

Marco Tarini
Universita degli Studi di Milano 3

3D Video Games 2020-06-08
12: Al for 3D Games

lllumination environments:
densely sampled

e A lightintensity / color from each direction d

e Asset to store that:
“Environment map” texture

53

lllumination environments:
densely sampled

e Latitude/longitude format
(of a unit vector d)

54

Marco Tarini
Universita degli Studi di Milano

3D Video Games
12: Al for 3D Games

Marco Tarini

lllumination environments:
densely sampled

e Also “sky-map” texture
e when it’s only / predominantly the sky to be featured
e doubles as textures for “sky boxes”

lllumination environments:
densely sampled

unit vector

e Environment map: (asset) R)
a texture with a texel t for each direction d

e texel t stores the light coming from direction d

e Q: how to find u, v position of t for a given d?
e i.e. how to parametrize (flatten) the unit sphere

e Different answers are possible...

g

latitude/longitude format mirror sphere format cube-map format
(ad hoc HW support!)

56

Universita degli Studi di Milano

2020-06-08

3D Video Games
12: Al for 3D Games

Marco Tarini

e Atexture with a texel t for each direction d
o texel t stores the light coming from direction d
e Used to compute reflections (on curved objects)
e Pro:

e realistic, complex, detailed, hi-freq, light environments
e best result for mirroring (e.g. shiny metal, glass, water) materials
e can be captured from reality
e Con:
e expensive
e storage cost, lighting computation cost

e hard for the engine to dynamically change
e easy, for static environments only

Environment map (asset) u..,_}-

57
Lighting env in the scene graph
world
-I/T1T w
B C D
T
y’ rT4 \ \rG
E F T5
T7' S g G H
L '
58

Universita degli Studi di Milano

2020-06-08

3D Video Games

12: Al for 3D Games

lllumination environments:
the Basis Functions way

set of all unit vectors
/ (i.e. surface of the unit sphere)

\

or R3if RGB
colored light

e Lighting environment:)
a continuous function f : > R

e Where f(¥) = amount of light
coming from direction ¥

e Store f through basis functions

fixed spherical “basis” functions (always the same ones)

/ / \

f@) =ago- foo®) +ay_1-fi1(D) + a0 fro® + a1 fre1(D) + -

\ \ / /

a few scalar values to be stored, in order to model f

59

lllumination environments:
with basis functions

; e)
| .o :o .o fap (D)
L mE X

KR X K
S TEEERE L

60

Marco Tarini

Universita degli Studi di Milano

2020-06-08

3D Video Games 2020-06-08
12: Al for 3D Games

. . i
Illumination environments: T
with basis functions

e Spherical Harmonics (SPH) in brief:
e store lllumination Env as a small number (1,4,9,16...) of
scalar weights of as many fixed
spherical basis functions.
e Pros:
e very compact
e models continuous function well: smooth environments
e allows for efficient computation of the Lighting equation

e Cons:

e continuous functions ONLY
e Bad for hi-freq details, e.g. no hard lights
e not much variations (unless very many coefficient used)

e Often good for background lights

61

Light probes .:]1
(position-dependent lighting env)

e Alight probe == a (precomputed) lighting evn to be
used near a given (xyz) position of the scene

e Light Probe lighting:
e preprocessing: disseminate the scene with light probes
e Store them as... low res environment maps
e ..or, with SPH (standard solution)

e atrendering time, for a object currently in pos (xyz),
use an interpolation of near-by “light probes”
e note: two (or more) SPH function can be interpolated!
(easy: just interpolate the weights)

e Widely used !

62

Marco Tarini
Universita degli Studi di Milano 8

3D Video Games 2020-06-08
12: Al for 3D Games

Light probes
(position-dependent lighting env)

63

Light probes
(position-dependent lighting env)

64

Marco Tarini
Universita degli Studi di Milano 9

3D Video Games
12: Al for 3D Games

Local lighting in brief ﬁ,

Material

properties
(data modelling
the «material»)

[lluminant final
(data modelling
the Lighting R,G,B

Environment)

Geometric data
(e.g. normal,

tangent dirs, the lighting
pos of viewer) equation

65

Reminder: normals ﬁ,

e Per vertex attribute of meshes,

or stored
in
normal
maps

66

Marco Tarini

Universita degli Studi di Milano

2020-06-08

10

3D Video Games

12: Al for 3D Games

Reminder:
(per vertex) Tangent directions
normal mapping ' «anw
(tangent space): A ~ BRDF: \
requires tangent dirs requires tantent dir

Oilureranee

In which space to computue
the lighting?

il
i

world
space

N
% b ['\TS

view
space

68

Marco Tarini

Universita degli Studi di Milano

2020-06-08

11

3D Video Games

12: Al for 3D Games

Local lighting in brief

\A/L.L‘,

s “%}5

c %QOC{

LARRS

Material
properties

’Lf\,{f‘s_.

2

(data modelling
the «material»)

[lluminant
(data modelling
the Lighting
Environment)

Geometric data
(e.g. normal,

tangent dirs,
pos viewer)

(the lighting
equation)

»
»
»

69

Lighting equation:
how

e Computed in the fragment shader

e most game engines support a good set of choices
e Custom new equations can be programmed in shaders
e optimization: “lift” linear computations to the vertex shader

e Material + geometry parameters stored :
in textures (for highest-frequency variations inside 1 obj)
in vertex attributes (smooth variations inside 1 obj)
as material asset parameters (no variation for 1 obj)

for example, where are
e diffuse color

e specular color

e normals

e tangent dirs

typically stored?

70

Marco Tarini

Universita degli Studi di Milano

2020-06-08

12

3D Video Games
12: Al for 3D Games

Marco Tarini

How to feed parameters
to the lighting equation

e Hard wired choice of the game engine
e but sometimes, a complex set of choices in the hand of the dev
e Specialized WYSIWYG game-tools not uncommon

e E.g.in
Unreal
Engine 4:

71
: : Dol
Beyond local lighting G
e Local lighting = only 3 things count:
e light emitter(s)
e the infinitesimal part of surface hit by light, i.e.:
e its local material
(i.e. how does it bounces light)
(aka: the BRDF)
e its local shape
e observer position
e Anything else is part of Global lighting
e The rest of the scene also affects the results
e Global effects are considerably HARDER
72

Universita degli Studi di Milano

2020-06-08

13

3D Video Games
12: Al for 3D Games

Marco Tarini

Global lighting:
two classes of approaches

e Strategy 1: use local lighting, but feed it a
position-dependent lighting environment

e baked (precomputed) i.e. in preprocessing
good for static part scenes —
problematic for dynamic scenes / lights
usually too expensive for every frame

e Strategy 2: ad-hoc rendering techniques

e basically, rendering algorithms that map well to existing
HW pipeline

e often, multi-pass techniques

e see Part Il of this lecture for a summarized list

e The two can be used jointly

73
3D Videogames 2018/2019
Univ. degli Studi di Milano
Rendering in games
Part Il: popular techniques in games
80

Universita degli Studi di Milano

2020-06-08

14

3D Video Games
12: Al for 3D Games

GPU pipeline —simplified
even more

y
%
V1 Vo
Vo . fragment
V2
V2

pixels
finali
z X 2D
screen fragments
3D vertex triangle (“wanna be
(e.g. of pixel”)
a mesh)
81

basics: Depth buffer

Scene per per per
(geometry) vertex triangle /‘fragment
transform rasterize texturing,
lighting, ...
+ depth test

DEPTH-BUFFER

| ™

by-product

screen

82

Marco Tarini
Universita degli Studi di Milano

2020-06-08

15

3D Video Games 2020-06-08
12: Al for 3D Games

Depth buffer
(or Z-buffer) (or depth-map)

e Any rendering producing a screen-buffer ...
e Which is sent to the screen
e Also produces a depth-buffer

e asa by product

e it’s used during rendering to deterineocclusions
(what covers what in a scene)

e many algorithms exploit it that!

83

basics: Double Buffering

SCREEN BUFFER A

pef
ﬁra%‘“em

pef

T ole
Scene pel triarn®
\Jeﬂ_e)(

(geometry)

SCREEN BUFFER B

84

Marco Tarini
Universita degli Studi di Milano 16

3D Video Games
12: Al for 3D Games

basics: Double Buffering

P

SCREEN BUFFER A

Scene

ber
(geometry) By
erte)() Per
"ange Per
f
’aé'rne,,t

SCREEN BUFFER B

85

basics:
Render to Texture

vo (
GEOMETRY per per
vertex ~ triangle
V2
TEXTURES

access(-es)

“Render Target”

SCREEN
BUFFER

86

Marco Tarini
Universita degli Studi di Milano

2020-06-08

17

3D Video Games
12: Al for 3D Games

basics:
Render to Texture

Se

TEXTURES

“Render Target”

vo "]
per per per
G vertex triangle 1 fragment TEXTURE

off-screen buffer

87
basics:
Render to Texture
“Render Target”
Vi Vi

other
TEXTURES
accesses
vo "
GEOMETRY per per
vertex . triangle
V2

SCREEN
fragment BUFFER

“Render Target”

88

Marco Tarini
Universita degli Studi di Milano

2020-06-08

18

3D Video Games 2020-06-08
12: Al for 3D Games

Multipass rendering techniques
(general concept)

e 1%t pass: fill aninternal 2D buffer
e i.e. An “off-screen” buffer (a buffer never shown to the user)
e |t's the output of this rendering, i.e.its “render target”

e Normally, the render target is the “screen buffer”
(buffer shown to the screen)

e This technique is aka “render to texture”
e 2" pass: fill the final screen buffer

e Using the just-computed internal buffer as a 2D texture
e Note: efficient because...

e the off-screen buffer is either only write-only (15 pass)
or read-only (2" pass). Never both!

e the off-screen buffer is constructed and used in GPU RAM.
No expensive swap of memory between CPU and GPU!

89

Example: metallic reflections
of dynamic scenes

Scene

(geometry)

1st PASS

per per per
vertex triangle /fragment

Env-Map
(6 images)

transform rasterize texturing,
lighting

Scene

2nd PASS

(geometry)

— Final
Rl 1P TP . % Screen-Buffer
vertex triangle /fragment I y

transform rasterize texturing,
lighting
including
reflection
over _ _
metallic objects img by Tze-Yiu Ho

90

Marco Tarini
Universita degli Studi di Milano 19

3D Video Games
12: Al for 3D Games

Marco Tarini

Main rendering algorithms:
two classes of approaches

g Forward renderlng aka Deferred lighting (actually, a variation)
° Deferred Shading / aka Deferred rendering (inappropriate?)

e Which approach to use?
e Both are employed by games

e Basilar choice! Implementation of all other rendering
algorithms changes accordingly.

91

Main rendering algorithms:
two classes of approaches

e Forward rendering

Scene per per per
(geometry) vertex triangle /fragment

transform rasterize texturing, 4
depth test, SCREEN BUFFER

Render Target

etc,
and Lighting

92

Universita degli Studi di Milano

2020-06-08

20

3D Video Games
12: Al for 3D Games

Marco Tarini

1st PASS

2nd PASS

Main rendering algorithms:

two classes of approaches

aka Deferred lighting (actually, a variation)

° Deferred shading / aka Deferred rendering (inappropriate?)

(multiple) Render Targets

Scene per per per / PN
(geometry) vertex triangle /fragment ,.

transform rasterize texturing,

depth test normals diffuse colors depth
etc,

‘ “G-BUFFER” buffer
and L%g

Asingle per
full-screen fragment
quad

SCREEN BUFFER

Lighting

[\o}
w

Deferred shading

Advantage:
lighting is computed only actually visible pixels

e it’s a huge saving if large depth complexity (aka overdraw)
and/or lighting complexity — both common in 3D games

Disadvantage:

needs a separate buffer for every material parameter
(or, sometimes, a material index)

e Normal buffer

e Depth bufferBase color buffer,

Limits range of materials?

Disadvantage: not very good with semi-transparency

94

Universita degli Studi di Milano

2020-06-08

21

3D Video Games
12: Al for 3D Games

Marco Tarini

Ad-hoc rendering techniques ;._,:]v-

popular in games: a summary

e Shadowing [i
e shadow mapping <— - with PCF
e Screen Space Ambient Occlusion <——
e Camera lens effects ~ SSAO
e Flares
e limited Depth Of Field <———
° Motlon qur. \‘“—\—w,,,,,,,, - DoF
e High Dynamic Range <~
e Non Photorealistic Rendering <‘m,,,\\\
e contours NG

e lighting quantization \ ~ HDR

e Texture-for-geometry \\
e Bumpmapping ~_

e Parallax mapping

95
4
Screen-Space techniques (in general) ..,:,1
(a class of multi-pass techniques)
e 15t pass:
e Render the scene from the same point of view
as the final scene
e Produce: final color buffer, plus a z-buffer
(and/or other auxiliary buffer)
e 2" pass:
e render just one single “full screen” rectangle
e (it filling the entire screens with two triangles)
e for each produced fragment: apply 2D effects to the buffer
e Notes:
e Basically, apply image filters to the rendering.
e Many of the techniques in the previous slides are like this
97

Universita degli Studi di Milano

2020-06-08

22

3D Video Games 2020-06-08
12: Al for 3D Games

Shadow mapping

Shadow mapping

100

Marco Tarini
Universita degli Studi di Milano 23

3D Video Games 2020-06-08
12: Al for 3D Games

. g
Shadow-mapping in a nutshell e

"|~,l

(a multi-pass technique for shadows)

1st pass:
e camera in light position
e render all light blockers
e produce a depth buffer only (known as the shadow map)
e (repeat for each discrete light casting a shadow) \
2nd pass:
e camera in final position

e for each fragment,
access the shadow-map,
determine if that
if fragment is visible
by light (or not)
e If notvisible,
negate contribution
of that discrete light source

e Result:
e Blockers cast ashadow

101
.]
Shadow-mapping G
concept
€3 7
LIGHT /GO EYE
final
SHADOW SCREEN
MAP BUFFER
102

Marco Tarini
Universita degli Studi di Milano 24

3D Video Games
12: Al for 3D Games

Marco Tarini

103

Shadow mapping:
issues

e Rendering shadow-map:
e Must be redone every time object move
e can be baked once and for all, for static objects only
e (jet another reason to label static objects!)
e Shadow-map resolution:
e it matters! aliasing effects N
e remedies: PCF, multi-res shadow-map <«——

optional topics
(no exam)

-

_—

N

Shadow Mapping:
results

e Negates (zeroes) the
light term of discrete light-sources

e Other light components are still summed
together...
e Non blocked lights
e Ambient factor
e Background illumination (e.g. from light probes)

104

Universita degli Studi di Milano

2020-06-08

25

3D Video Games
12: Al for 3D Games

Screen Space AO (SSAQ)

o b L T,
. N\ T —

ALl

oo
"L

T

{ = -
A g —] s

N _——

an| T
SSAO only

B L.

105

Ambient occlusion (AO)

e Cast shadows (computed by shadow-maps)
negate the light coming from discrete light sources

e “Ambient occlusion”, negates (occludes) the
“ambient” component of lighting, instead

e |dea:

the AO is a factor (between 0 and 1) for each surface point
AOQ factor multiples the ambient component for that point
Intuitively, for a point p, its AO factor is a measure of how

much p is exposed in the open
e pis well exposed: AO= 1.0

e pishidden, e.g. itis in the bottom of a crack: AO = 0.0
Exact definition - not in this course. But keep in mind:

e (1)itisan approximation

e (2)itisa purely geometrical computation

106

Marco Tarini

Universita degli Studi di Milano

2020-06-08

26

3D Video Games 2020-06-08
12: Al for 3D Games

p W o
Two ways to compute AO: ‘u“..,_'zﬁ-
OSAOQO versus SSAO

e Object Space Ambient Occlusion (OSAQ)

e Baked in preprocessing on each mesh

e Stored as a per-vertex attribute OR a texture

(“AO0-map”, or “light-map”)

e Pro:accurate & cheap (during rendering)

e Con: static! Doesn’t reflect current pos of the objects in the scene
e Screen Space Ambient Occlusion (SSAO)

e Screen space technique

e 1%t pass: compute depth map (maybe normal too)

e 2" pass: compute AO map from the above
(AO factor of each pixel, depends on neighboring depth values)

e Final pass: use AO per-pixel from pass 2

e Pro: dynamic! Reflect current position of objects in the scene
e Con:less accurate
C

e Can be combined!
107
: Aol
Baking AO over a mesh A
(OSAQ)
Exposed
high AO-factor
-~ w
P
Hidden:
low AO factor
(dark)
Baked AO map
108

Marco Tarini
Universita degli Studi di Milano 27

3D Video Games 2020-06-08
12: Al for 3D Games

No SSAO &y

109

With SSAO :‘1

110

Marco Tarini
Universita degli Studi di Milano 28

3D Video Games
12: Al for 3D Games

Screen Space AO
in a nutshell

e First pass: standard rendering
e produces: rgh image
e produces: depth image

e Second pass:
screen space technique

e for each pixel, look at depth VS its neighbors:

e neighbors in front?
difficult to reach pixel: darken ambient

e neighbors behind?
pixel exposed to ambient light: keep it lit

111

(limited)
Depth of Field

depth

out of focus
range
blurred

112

Marco Tarini
Universita degli Studi di Milano

depth
in focus
range
sharp

2020-06-08

29

3D Video Games
12: Al for 3D Games

(limited) Depth of Field
in a nutshell

e Screen space technique:

e 1st pass: standard rendering, producing
e RGB image
e Z-buffer

e Second pass:
e pixel inside of focus range? Keep in focus

e pixel outside of focus range? blur

e Blur, way 1 = average with neighbors pixels
kernel size ~= amount of blur
e Blur, way 2 = compute MIP-map of RGB image,
use lower MIP-map level with bilinear interpolation

113

HDR - High Dynamic Range
(limited Dynamic Range)

114

Marco Tarini
Universita degli Studi di Milano

2020-06-08

30

3D Video Games
12: Al for 3D Games

HDR - High Dynamic Range
in a nutshell

e Screen space technique:
e First pass: like a normal rendering, BUT
use lighting / materials with any values
e RGB of final pixel values not in [0..1]
e e.g.sun emits light with RGB [10.0,10.0,10.0]:
e If >1 ="overexposed”! That is, “whiter than white”

e Second pass:
e Make values >1 bleed over other pixels
e i.e.: overexposed pixels lighten neighbors

115

Parallax mapping:
in a nutshell

e Texture-for-geometry technique

e Texture used:
e displacement maps
e color/rgb map

116

Marco Tarini
Universita degli Studi di Milano

2020-06-08

31

3D Video Games 2020-06-08
12: Al for 3D Games

Parallax Mapping ﬁ,

117

Parallax Mapping

118

Marco Tarini
Universita degli Studi di Milano 32

3D Video Games
12: Al for 3D Games

Motion Blur

119

Non-
(NPR)

PhotoRealistic Rendering

e Any rendering technique not aimed at realism

e Instead, the objective can be:

e imitating a given style (imitative rendering),
such as:

cartoons (“toon shading”) € most popular!
pen-and-ink drawings

pencil sketches

pixel art € popular in nostalgic retro games (niche)
manga, or, western comics € not uncommon
pastels, oil paintings, crayons ...

e clarity/readability (illustrative rendering)

usually not for games

e

120

Marco Tarini

Universita degli Studi di Milano

2020-06-08

33

3D Video Games 2020-06-08
12: Al for 3D Games

Toon shading / Cel Shading ﬁ,

121

(tweaked) Team Fortress Il — Steam

122

Marco Tarini
Universita degli Studi di Milano 34

3D Video Games 2020-06-08
12: Al for 3D Games

Toon shading / Cell Shading :.':ﬁ-
in a nutshell

e Simulating “toons”
e Two effects:

e add contour lines

e lines appearing at discontinuities of:
1. depth,
2. normals,
3. materials
e quantize lighting:
e e.g. 2 or 3 tones: light, medium, dark
instead of continuous

e simple variation of lighting equation

123

NPR rendering: :._111
e.g.: simulated pixel art

o

N

& &

11 'R

img by Howard Day (2015)

124

Marco Tarini
Universita degli Studi di Milano 35

