


1

Rappresentazione dell'informazione

- 'Informazione': una conoscenza, composta di elementi (dati),
 - ad esempio un dato = un numero o una stringa, con associato un significato
- · Rappresentare l'informazione significa stabilire un modo per rappresentarla come sequenze di simboli di un certo «alfabeto» (insieme di simboli) $A=\{a_1,...,a_n\}$.
 - Ad esempio: codifica binaria = una in cui si usa un alfabeto di soli due simboli A={0,1}.
- · La corrispondenza fra l'informazione e simboli che la rappresenta è anche detta la codifica (o sistema di codifica)
 - · Ad esempio: una codifica binaria
- Terminologia: sintassi e semantica
 - Sintassi = come scrivo un informazione, tradotta in simboli
 - Semantica = il significato dell'informazione scritta
- Ad esempio, usando familiare «codifica in base 10» (che siamo per rivedere nuovamente), il dato scritto con sequenza di simboli «20» ha come **semantica** il numero dei pallini visibili qui a fianco:

Elaborare l'informazione

L'idea base di un elaboratore:

lavorare meccanicamente sulla sintassi («manipolazione sintattica») che rappresenta dell'informazione, per ottenere la sintassi della risposta che stiamo cercando.

Per esempio, problema:

«Ci sono 245 persone in una stanza e ne entrano 71 altre. Quante persone ci sono ora?»

- Dati (codificati in base 10): 245 e 71 (qual è la semantica associata?)
- Elaborazione (usando il familiare metodo o algoritmo detto «somma per colonna»):

245 + 71 = _____ 316

- Manipolando le due RAPPRESENTAZIONI (la cui semantica costituisce la mia informazione di partenza) o ottenuto, con un processo meccanico, una nuova RAPPRESENTAZIONE (la cui semantica costituisce la soluzione che cerco)
- Un elaboratore digitale è un dispositivo elettronico che elabora, in modi simili a questo (ma automatici, non "a mano"), informazione codificata in binario

Rappresentazione dell'informazione: intuizione

Il numero indica una quantità

Quanti elementi?

Come possiamo rappresentare una quantità? Abbiamo bisogno di un insieme di simboli

 $S = \{0...9\}$

20

 $S=\{a...z\}$

venti

 $S = \{0,1\}$

10100

UNIVERSITÀ DEGLI STUDI DI MILANO

In questo esempio la quantità di pallini è l'informazione (semantica), mentre la sequenza di simboli è una sua rappresentazione (sintassi).

Come si vede, ci possono essere molteplici rappresentazioni della stessa informazione (usando codifiche diverse).

Cioè, sintassi diverse possono avere la stessa semantica.

Parte 1. Sistema di numerazione

- Sistema di numerazione: una codifica per numeri naturali № (cioè 0, 1, 2, 3 ...)
- Sistema di numerazione posizionale: una che usa un alfabeto di K simboli (la «base» del sistema), e ogni simbolo («cifra») ha un valore diverso a seconda della sua posizione
 - La cifra più a destra è la cifra meno significativa, quella più a sinistra e la cifra più significativa.
 - · Nota: esistono sistemi non posizionali, ad esempio, sistema di numerazione romano
- Sistema di numerazione **decimale**: il sistema posizionale a base dieci.
 - l'alfabeto è {0,1,2,3,4,5,6,7,8,9} (dieci simboli).
 Ogni cifra ha un peso definito dalla potenza di 10 con esponente la posizione della cifra nella sequenza (a partire dalla posizione 0)

$$4832 = (4x1000) + (8x100) + (3x10) + (2x1)$$
$$= (4 \times 10^{3}) + (8 \times 10^{2}) + (3 \times 10^{1}) + (2 \times 10^{0})$$

• Il sistema di numerazione decimale è di tipo **posizionale** con **base** 10.

6

Numeri decimali (cioè codificati in base 10)

In un sistema di numerazione **posizionale in base 10,** un numero viene rappresentato come una sequenza di cifre appartenenti ad un alfabeto di 10 simboli:

Sistema di numerazione posizionale in base qualsiasi

In un sistema di numerazione **posizionale in base B,** un numero viene rappresentato come una sequenza di cifre appartenenti ad un alfabeto di B simboli:

Cifra più Cifra meno significativa
$$\begin{matrix} c_{k-1} & \dots & c_1 \\ \end{matrix} \begin{matrix} c_0 \end{matrix}$$

La cifra i-esima ha $peso B^i$. Il valore N corrispondente si ottiene come segue:

$$N = c_{k-1} \times B^{k-1} + \dots + c_1 \times B^1 + c_0 \times B^0$$

Posso riscrivlo come:

$$\sum_{i=0}^{k-1} c_i \cdot B^i$$

Esempio: base 4

B=4 cifre: $\{0,1,2,3\}$

quando la base non è chiara dal conteso, la si scrive in pedice

Per esempio: 321₄

Nota! Non si legge «trecentoventidue», che significherebbe tre-cento (3x100) venti (2x10) due (2), Si legge «tre due uno (in base 4)»

A quale valore corrisponde 321₄ (cioè, come traduco «321» dalla base 4 alla familiare base 10)?

$$(3x4^2) + (2x4^1) + (1x4^0) = 3x16 + 2x4 + 1 = 57_{10}$$

Esempio di elaborazione: somma

Usando la base decimale (come hai imparato alle elementari)

$$124 + 86 = 210$$

1 1

1 2 4 +

8 6

2 1 0

10

UNIVERSITÀ DEGLI STUDI DI MILANO

Esempio di elaborazione: somma

Usando la base 4

 $1331_4 + 2031_4 = 10022_4$

1

1 3 3 1+

2 0 3 1 =

1 0 0 2 2

Esempio di elaborazione: somma

Usando la base 8

$$134_8 + 65_8 = 221_8$$

1 1

1 3 4 +

6 5

2 2 1

+	0	1	2	3	4	5	6	7
0	0	1	2	3	4	5	6	7
1	1	2	3	4	5	6	7	10
2	2	3	4	5	6	7	10	11
3	3	4	5	6	7	10	11	12
4	4	5	6	7	10	11	12	1 3
5	5	6	7	10	1 1	12	1 3	14
6	6	7	10	11	12	13	14	15
7	7	10	11	12	13	14	15	16

La "tabellina della somma" in base 8!

12

UNIVERSITÀ DEGLI STUDI DI MILANO

Esercizi di riepilogo

- 1. Converti in base 10: 612₈ 1101₂ 1201₃
- 2. Compila la «tabellina della somma» della base 5
- 3. Esegui la somma in base $5:123_5+33_5$
- 4. Verifica la correttezza dell'esercizio sopra, convertendo in base 10, e ripetendo la somma
- 5. Scrivi in base 7 il numero più grande e quello più piccolo che puoi esprimere usando al più tre cifre, e convertili entrambi in base 10

