

15

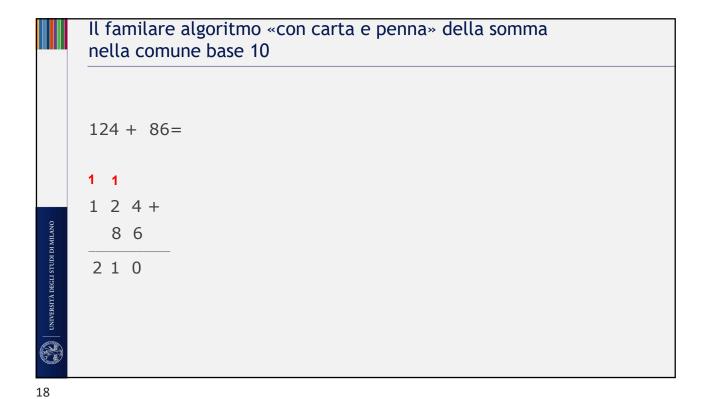
Sistema di numerazione binario

Il sistema in base 2 è detto binario. Cifre: {0,1}.

$$110_2 = (1x2^2) + (1x2^1) + (0x2^0) = 6_{10}$$

 $1011_2 = (1x2^3) + (0x2^2) + (1x2^1) + (1x2^0) = 11_{10}$

UNIVERSITÀ DEGLI STUDI DI MILANO



Esempio in base 2

1101₂ + 1001₂

1101 + 1001
1001
100110

Altre operazioni su numeri codificati in base B

Conosciamo tutti (fin dalle elementari!) alcuni altri algoritmi standard per effettuare operazioni su numeri codificati in base 10, facilmente adattabili ad una base qualsiasi (e in particolare, alla base 2):

- Somma (come visto)
- Differenza (A B = C)
- Prodotto (A x B = C) [te lo ricordi?]
- Divisione (intera), cioè trovare il **quoziente** e il **resto**

20

Divisone intera (cioè fra numeri interi): quoziente e resto

Dati il dividendo A e il divisore D, trovare il quoziente Q e il resto R (con R < D) tali che

 $A = D \times Q + R$

- A / B = Q (quoziente)
- A % B = R (resto)

Ad esempio, con A = 24 e D = 10, diciamo:

- "24 diviso 10 uguale 2 col resto di 4" (infatti 24 = 10 x 2 + 4, cioè
- 24 / 10 = **2** ("il 10 sta nel 24 **2** volte...", **2** è il *quoziente* della divisione)
- 24 % 10 = **4** ("...col resto di **4**", **4** è il **resto** della divisione) anche scritto
- "24 rem 10 = **4**" (rem = reminder = resto), o
- "24 mod 10 = **4**", mod = modulo, "24 modulo 10")

21

UNIVERSITÀ DEGLI STUDI DI MILANO

Algoritmo per la divisione intera

Chi si ricorda l'algoritmo per la divisione intera (su base 10) quello delle elementari, da eseguire con carta e penna?

217 15 15 14 067 60 7 quoziente

"il 15 nel 21 ci sta 1 volta... 15 x 1 = 15... 21 meno 15 fa 06... «calo» il 7... il 15 nel 67 ci sta 4 volte... 15 x 4 = 60... 67 meno 60 fa 7..."

quindi 217 = 15 x **14** + **7**

22

Un caso speciale:

moltiplicazioni e divisioni per numeri B^k in base B

Osservazione: nella familiare base 10, è estremamente facile moltiplciare e dividere per 10, 100, 1000, o qualsiasi potenza di 10 (quelli che chiamiamo numeri "tondi"). Si tratta di un'operazione banale sulle rappresentazioni dei numeri!

Ad esempio, è banale svolgere (senza bisogno dell'algoritmo "standard"):

 $13 \times 10 = 130$ $124 \times 100 = 12400$

540 / 10 = 54

32452 / 1000 = 32 col resto di 452

 $352 \times 1,000,000 = 352,000,000$

Nota: useremo la virgola per raggruppare le cifre, (non il punto)

usando la notazione inglese

Regola: "Ogni zero che aggiungo a destra moltiplica per B=10 (la base)." "Ogni cifra che tolgo da destra divide per B=10 (e la cifra tolta è il resto della divisione)"

Vale per ogni base!

Un caso speciale:

moltiplicazioni e divisioni per 2^k in base 2 (cioè per 2, 4, 8, 16...)

In base 2... raddoppiare = aggiungere uno zero in fondo $1101_b = 13_{10}$ allora $11010_b = 26_{10}$

moltiplicare per otto (cioè 2^3) = aggiungere tre zeri in fondo $1101_b = 13_{10}$ allora $1101000_b = 13_{10} \times 8_{10}$ infatti, $1101_b \times 1000_b = 1011000_b$

Dividere per due = togliere l'ultima cifra.

Resto della divisione per due: l'ultimo bit (il least significant bit).

Conseguenza: in base due, l'ultimo bit vale 1 sse il numero è dispari!

Per dividere 1100101_b per 8 (dove 8 = 2^3) è banale: 1100101_b

Quoziente = 1100_b Resto = 101_b

24

Rappresentazione di un numero naturale in base qualsiasi B ... usando K cifre

Data una base B, supponiamo di poter utilizzare al massimo K cifre. Quanti e quali numeri posso rappresentare?

Con K cifre in base B, possiamo rappresentare B^K numeri, da 0 a B^k-1.
 L'insieme dei numeri rappresentabili costituisce l' intervallo di rappresentazione:

 $[0, B^{k-1}]$

Esempio: con K=3, B=10, l'intervallo di rappresentazione è $[0,999_{10}]$

 Il numero più grande rappresentabile con K cifre in base B è costituito da cifre tutte uguali a B-1.

Esempio: con K=5, B=7 il numero più grande è 666667

Rappresentazione dei numeri in un computer

In un computer, non è possibile rappresentare l'insieme infinito dei numeri, perchè il numero di cifre (bit) che possono comporre il numero è limitato.

Un numero viene invece rappresentato da una sequenza di bit di lunghezza prefissata. La lunghezza di questa sequenza è una potenza di 2 (ad esempio 8,16, 32, 64).

0 0 0 1 1 1 1 1

rappresentazione su 8 bit (1 byte)

1 0 0 0 1 0 0 1 1 1 0 1 0 1 1

rappresentazione su 16 bit (2 byte)

I numeri naturali rappresentabili in un computer vengono anche chiamati ${\bf interi\ senza\ segno}$

26

UNIVERSITÀ DEGLI STUDI DI MILANO

Esempio

Determinare l'intervallo di rappresentazione nei seguenti casi:

K=8, B=2 →

 $[0,255_{10}]$ $255=2^8-1$

 $K=2, B=16 \rightarrow$

 $[0, 255_{10}]$ $255=16^2-1$

K=2, B=7

?

K=11, B=2

?

Numero minimo di cifre

Dato un numero N e una base B, il numero minimo K di cifre necessarie per rappresentare numeri da O a N si calcola come segue:

$$K = \lfloor \log_B N \rfloor + 1$$

funzione **floor** L _

floor(x) determina il più grande intero int <=x

Es: floor(1.4) = 1

funzione **ceiling** $\Gamma \gamma$

Ceiling(x)x determina il più piccolo intero int >=x. Es. Ceiling (1.4) =2

28

UNIVERSITÀ DEGLI STUDI DI MILANO

Esempio

bit necessari per rappresentare i numeri fino a 35 e 128 in base 2

$$K = \lfloor (\log_2 35) \rfloor + 1 = 6$$

 100011_2

$$K = L (log_2 128) \rfloor +1 = 8$$

1000 00002

UNIVERSITÀ DEGLI STUDI DI MILANO

Oppure, più lento: a mano.

Esempio, per 35:

«con 4 bit arrivo fino a $2^4-1 = 15$, non basta»

«con 5 bit arrivo fino a $2^5-1 = 31$, non basta»

«con 6 bit arrivo fino a 2^6-1 = 63 mi basta!»

Overflow

Si consideri sempre il caso in cui si possono usare K cifre in base B. Consideriamo l'operazione di somma.

La somma fra due numeri può non essere rappresentabile con K cifre!

Esempio: K=2, $B=10 \rightarrow 35+80$ non è rappresentabile

In questo caso, si dice che l'operazione di somma determina **overflow** (trabocco)

L'overflow si può verificare in altre operazioni, per es (ancora con K=2, B=10) genera overflow

- Successivo(99) (il calcolo del numero successivo di 99)
- 56 66 (i numeri negativi non sono rappresentabili con numeri senza segno!)
- 20 x 30

31

Esempio: overflow nella somma di binari

Si assuma B=2, numero di cifre K=4

 $1101_2 + 1001_2$

1 1 1101₂ +

1001₂ 10110

 \rightarrow **1**0110₂ OVERFLOW!

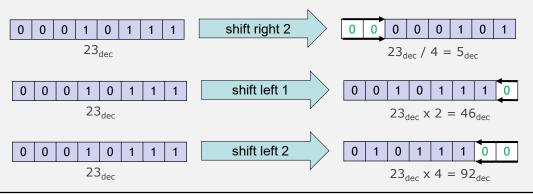
UNIVERSITÀ DECLI STUDI DI MILANO

L'overflow viene rilevato perché l'ultimo riporto non è zero)

Moltiplicazioni e divisioni «banali» (cioè per multipli di 2) su numeri binari a k cifre: operazione di SHIFT

Su numeri a k cifre, l'operazione di shift (verso sinistra o destra) consiste nel far *scorrere* le cifre di N posti (a destra o a sinistra) (effettuando così moltiplicazioni o divisioni intere per 2^N)

Esempio, su un byte (binario ad 8 bit):



33

Conversione di base

- L'operazione di conversione di base converte un numero da una base ad un'altra.
- · Abbiamo già visto la conversione da base B qualsiasi a base 10.
- · Ora consideriamo:
 - Conversione da base 10 a base B
 - Conversione da base 16 a base 2, e da base 2 a base 16 (next lecture)

UNIVERSITÀ DEGLI STUDI DI MILANO

Conversione da base 10 a base B

Algoritmo di conversione di un numero **x** in base 10 in base *B*:

$$i = 0$$
Divido (o

Divido (div. intera) il numero x per B **Resto** della divisione:

cifra i-esima in base B

$$i = i+1$$

Quoziente della divisione → x

si prosegue fino a che il quoziente x = 0

L'ultimo resto è la cifra più significativa del numero in base B

UNIVERSITÀ DEGLI STUDI DI MILANO

35

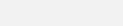
Esempio

Convertire in base 2 il numero 1492

Q

R

1492:2	746	0	← Bit meno significativo
746:2	373	0	
373:2	186	1	
186:2	93	0	k
93:2	46	1	1492 ₁₀ \rightarrow
46:2	23	0	, 10
23:2	11	1	
11:2	5	1	
5:2	2	1	
2:2	1	0	



1

← Bit più significativo

36

UNIVERSITÀ DEGLI STUDI DI MILANO

1:2

Verifica : conversione da base Binaria (cioè 2) a base 10

101 1101 0100 ₂ = $1x2^{10} + 0x2^9 + 1x2^8 + 1x2^7 + 1x2^6 + 0x2^5 + 1x2^4 + 0x2^3 + 1x2^2 + 0x2^1 + 0x2^0 = 1024 + 256 + 128 + 64 + 16 + 4 =$ **1492**₁₀

27

Esempio

Convertire **1492₁₀** in base 8:

Q R 1492 : 8 186 4 \leftarrow Cifra meno significativa 186 : 8 23 2

23:8 2 7
2.10 (Sifter with a least fixed by a least fixed

2 : 8 0 2 ← Cifra più significativa

 $1492_{10} \rightarrow 2724_8$

38

UNIVERSITÀ DEGLI STUDI DI MILANO

Esempio

Convertire in base 5 il numero 148

	Q	R	
148:5	29	3	← Bit meno significativo
29:5	5	4	
5:5	1	0	
1.5	0	1	← Bit niù significativo

39

UNIVERSITÀ DEGLI STUDI DI MILANO

Esercizi di riepilogo

- 1. Specifica l'intervallo di rappresentazione (numero minimo e massimo esprimibile) dei numeri naturali in base 2 con 10 cifre
- 2. Qual è il numero minimo di cifre necessarie per rappresentare in base 2 i numeri naturali 57_{10} e 1023_{10} ?
- 3. Convertire 67_{10} in base 3, e verifica il risultato effettuando il passaggio inverso.
- 4. Quanto fa 10110_2 per 32_{10} , in <u>binario</u>? (hint: scroprilo senza «conti»)
- 5. Quanto fa $101010111011110101011010_2$ modulo 16_{10} , in <u>decimale</u>?
- 6. Scrivere un'operazione di Shift a sinistra a piacere che generi un overflow (su un byte). E' possibile generare un overflow con uno shift a destra?
- 7. Trova e somma fra loro due byte che rappresentano, come *unsigned int*, «ottantanove» e «centocinquanta» (effettuando l'operazione in binario). Si è generato un overflow?
- 8. Provare: effettua la moltiplicazione fra 1010₂ e 1011₂ in binario (generalizzando alla base 2 il familiare algoritmo «con carta e penna» della moltiplicazione, che sai già applicare, dalle elementari, in base 10). Verifica il risultato.

40

UNIVERSITÀ DEGLI STUDI DI MILANO