

41

Base 16. Cifre: {0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F}

 $A_{16} = 10_{10}$

 $B_{16} = 11_{10}$

 $C_{16} = 12_{10}$

 $D_{16} = 13_{10}$

 $E_{16} = 14_{10}$

 $F_{16} = 15_{10}$

 $1 A = 1 \times 16^{1} + 10 \times 16^{0} = 26_{10}$

Esempio

Rappresentare **1492₁₀** in base 16:

	Quozionte	Resto		
1492	93	4	← Cifra meno significativa	
93	5	13	si rappresenta con D	
5	0	5	← Cifra più significativa	

 $1492_{10} \rightarrow 5D4_{16}$

43

UNIVERSITÀ DEGLI STUDI DI MILANO

Esempio

Per rendere più veloce il calcolo...

$$N_2 = {\overset{2^4}{1}} \, {\overset{2^3}{1}} \, {\overset{2^2}{1}} \, {\overset{2^1}{1}} \, {\overset{2^0}{1}}$$
 \rightarrow $N_{10} = 31$

16² 16¹ 16⁰

 N_{16} = 1 A 0 $_{16}$ \rightarrow N_{10} = 1x256 + 10x16 + 0x1 = 416

UNIVERSITÀ DEGLI STUDI DI MILANO

Conversione da base 2 a base 16

Si raggruppano le cifre in gruppi di 4, a partire da destra. Quindi si converte il numero rappresentato da ogni gruppo (compreso fra 0 e 15) in base 16

- (i) conversione di $1001 \ 1011_2$ $1001_2 \rightarrow 9_{16}$ $1011_2 \rightarrow B_{16}$
- → 9B ₁₆
 - (ii) conversione di $110 \ 1011_2$:
 - $1011_2 \rightarrow B_{16}$

 $0110_2 \rightarrow 6_{16}$ (viene aggiunto uno 0 per formare un gruppo di 4)

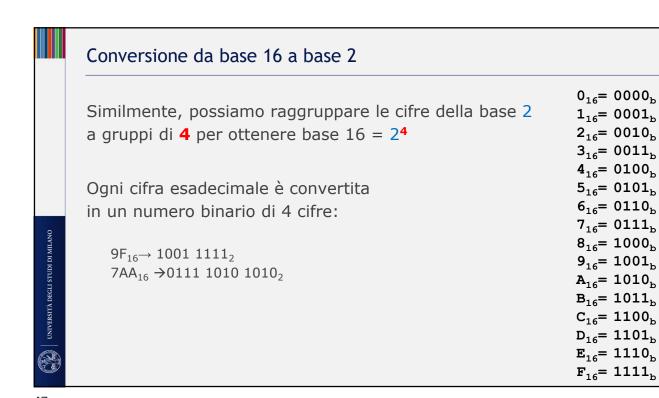
→ 6B₁₆

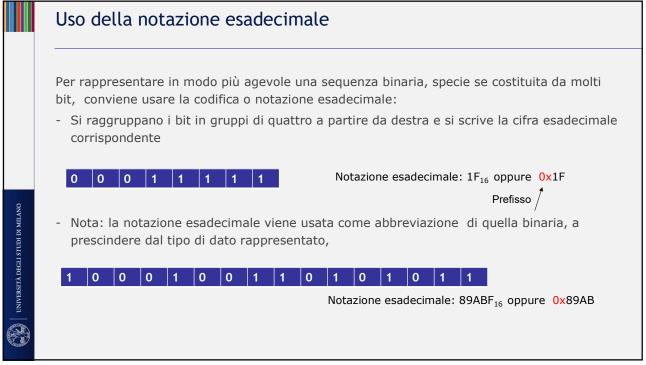
45

Da base 10 a base 1000

Per numeri grandi, siamo abituati (nel parlato) a raggruppare le cifre a gruppi di **3** e leggere il numero in "base 1000", cioè base 10³.

Esempio:


una delle 1000 "cifre" della base 1000, da 000 a 999


150,634,301,238
1000³ 1000² 1000¹ 1000⁰

"150 miliardi 634 milioni 301 mila 238"

46

UNIVERSITÀ DEGLI STUDI DI MILANO

UNIVERSITÀ DEGLI STUDI DI MILANO

Misurare la quantità di dati

Prefisso		Prefisso	
KB (KiloByte)	10³ byte	KiB (Kibibyte)	2 ¹⁰ byte
MB (MegaByte)	106 byte	MiB (Mebibyte)	2 ²⁰ byte
GB (GigaByte)	109 byte	GiB (Gibibyte)	2 ³⁰ byte
TB (TeraByte)	1012 byte	TiB (Tebibyte)	2 ⁴⁰ byte
PB (PetaByte)	10 ¹⁵ byte	PiB (Pebibyte)	2 ⁵⁰ byte
EB (ExaByte)	1018 byte	EiB (Exbibyte)	2 ⁶⁰ byte
ZB (ZottaByte)	10 ²¹ byte	ZiB (Zobibyte)	2 ⁷⁰ byte
YB (YottaByte)	10 ²⁴ byte	YiB (Yobibyte)	2 ⁸⁰ byte
•••	•••		•••

49

Esercizi di riepilogo

- 1. Convertire in base 10: 11101100₂ 1103₄ FF₁₆
- 2. Esprimere A2₁₆ in base 2
- 3. Calcolare $A2_{16} + F_{16}$ e determinare se l'operazione genera overflow considerando una rappresentazione a 2 cifre (in base 16)
- 4. Esprimi in base 16 tre esempi di un valori assegnabili ad un byte.
- 5. Esprimi in base 16 il massimo valore esprimibile in un «word» di 4 byte.
- 6. Una quantità di 15 MB, a quanti KB corrisponde?

UNIVERSITÀ DEGLI STUDI DI MILANO