

1

Sommario

Rappresentazione binaria dei numeri interi con segno:

- Rappresentazione in modulo e segno
 - Intervallo di rappresentazione
- Rappresentazione in complemento a 2 (C2)
 - Intervallo di rappresentazione
 - Regole pratiche
 - Somme e sottrazioni
 - Overflow

Rappresentazione dei numeri interi con segno

- Interi con segno: -2,-1, 0, +1, +2...
- Nella notazione che ci è più familiare, per indicare il segno si usa un ulteriore simbolo +/-

- Nel sistema binario, abbiamo a disposizione unicamente 2 simboli. Inoltre in un computer il numero di cifre che compongono un numero è prefissato. Il problema è dunque come rappresentare questa informazione col numero di bit a disposizione.
- Sia N il numero di bit. Consideriamo tre modalità di rappresentazione su N bit:
 - Modulo e segno
 - Rappresentazioni con offset (o «spiazzamento»)
 - Complemento a 2 (C2)

3

UNIVERSITÀ DEGLI STUDI DI MILANO

Rappresentazione in modulo e segno con N bit

Il bit più significativo indica il segno mentre gli altri bit rappresentano il numero in valore assoluto:

- + è rappresentato da 0
- è rappresentato da 1

UNIVERSITÀ DEGLI STUDI DI MILANO

Esempio: N=8 $0000\ 0001 \rightarrow +1$

1000 0001 → -1

Intervallo di rappresentazione

Si possono rappresentare i numeri nell'intervallo:

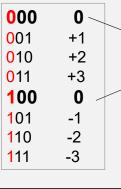
$$[-2^{N-1}+1, +2^{N-1}-1]$$

Es:
$$N=8 \rightarrow [-2^7 + 1 , +2^7 - 1] \rightarrow [-127, +127]$$

_

UNIVERSITÀ DEGLI STUDI DI MILANO

Svantaggi della rappresentazione in modulo e segno


- (1) Duplice rappresentazione dello 0
- (2) Le operazioni aritmetiche sono complesse

Esempio:

-

UNIVERSITÀ DEGLI STUDI DI MILANO

N=3

Due diverse rappresentazioni

per lo 0

Rappresentazione con spiazzamento (o offset)

Idea: codifico X per rappresentare il valore (X – OFFSET)dove OFFSET (lo spiazzamento)è una quantità scelta dalla codifica, una volta per tutte.

Per esempio, in base 10, con 2 cifre, con OFFSET 30:

 $\ll 40$ » rappresenta il valore 40 - 30 = 10 (un numero positivo)

 $\ll 30$ » rappresenta il valore 30 - 30 = 0

<00> rappresenta il valore 0 - 30 = -30 (un numero negativo)

Un vantaggio: un solo modo di rappresentare lo 0.

Uno svantaggio: lo zero si scrive in modo diverso da «tutte le cifre 0»

7

UNIVERSITÀ DEGLI STUDI DI MILANO

Rappresentazione con spiazzamento (o offset)

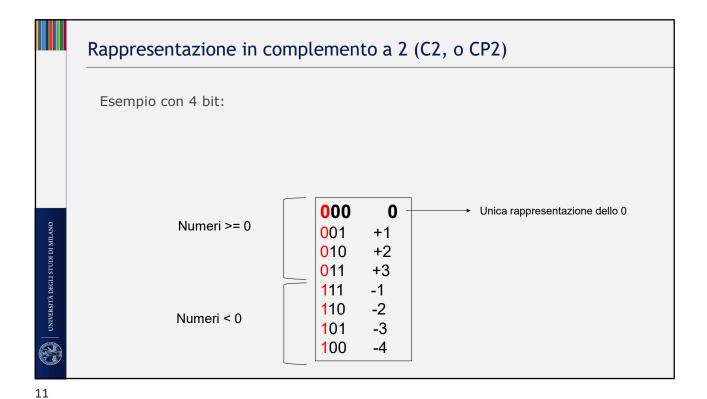
Domande:

- in base B, con N cifre, e offset S,
 qual è l'intervallo di rappresentabilità?
 (cioè qual è il più grande e più piccolo numero esprimibile)?
- 2) Come si codificano in base 10, con 3 cifre, e spiazzamento 200, i valori...
- 0
- +200
- -200
- 34

Rappresentazione con spiazzamento (o offset)

Domande:

- 1) in base B, con N cifre, e offset S, qual è l'intervallo di rappresentabilità? $[-S ... B^N 1 S]$ (cioè qual è il più grande e più piccolo numero esprimibile)?
- 2) Come si codificano in base 10, con 3 cifre, e spiazzamento 200, i valori...
- 0 «200»
- +200 «400»
- -200 «000»
- 34 «234»


9

Rappresentazione in complemento a 2 (C2, o CP2)

- La rappresentazione in complemento a 2 è quella comunemente utilizzata negli elaboratori. Permette di ovviare ai problemi posti dalle altre rappresentazioni e fornisce una serie di vantaggi
- L'idea base è che il MSB (Most Significant Bit, la cifra binaria più a sinistra) vale il opposto del valore solito: cioè, su N cifre, vale MENO 2^{N-1}
- Esempio con 6 bit:

Rappresentazione in complemento a 2 (C2, o CP2)

-2n-1 +2n-1 meno 1

Osservazione (capire perché):

1 1 1 ... 1 1 1

C 2

Domande:

Come determino il segno di un numero in CP2?

Come codifico il numero minore possibile (quindi, negativo) in CP2 a N bit?

Quanto vale?

Come codifico il numero maggiore possibile (quindi, positivo) in CP2 a N bit?

Quanto vale?

Mettendo tutti i bit ad 1, cosa codifico in CP2?

(non dipende dal numero di bit!)

Rappresentazione in complemento a 2 (C2, o CP2)

Risposte: (capire come mai!)

- Come determino il segno di un numero in CP2?
 Dal primo bit (come con modulo e segno!): 1 => negativo, 0 => positivo
- Come codifico il numero minore possibile (quindi, negativo) in CP2 a N bit?
 100...00
 Quanto vale? -2ⁿ⁻¹
- Come codifico il numero maggiore possibile (quindi, positivo) in CP2 a N bit?
 011...11
 Quanto vale? +2ⁿ⁻¹ 1
- Mettendo tutti i bit ad 1, cosa codifico in CP2?
 Sempre il valore -1

13

UNIVERSITÀ DEGLI STUDI DI MILANO

Intervallo di rappresentazione in C2

- Intervallo di rappresentazione: $[-2^{N-1}, +2^{N-1}-1]$
- La rappresentazione dello 0 è unica, quindi l'intervallo di rappresentazione comprende un numero in più rispetto alla rappresentazione in modulo e segno

Per
$$N=3$$
 [-4, +3]

Per N=4
$$[-2^{4-1}, +2^{4-1} -1] \rightarrow [-8, +7]$$

Per N=8
$$[-2^{8-1}, +2^{8-1} -1] \rightarrow [-128, +127]$$

Algoritmo per invertire il segno di un numero in CP2 (invertire il segno = calcolare l'opposto)

Passo 1: flip di ogni bit

Passo 2: aggiungo uno al risultato

ESEMPI (con 5 bit):

-16+8+2 = -6

$$11111 = (FLIP) = > 00000 = (+1) = > 00001$$

$$01011 = (FLIP) = > 10100 = (+1) = > 10101$$

8+2+1 = 11

-16+4+1 = -11

$$00000 = (FLIP) = > 11111 = (+1) = > 00000$$
No overflow!

15

UNIVERSITÀ DEGLI STUDI DI MILANO

Algoritmo per invertire il segno di un numero in CP2: una variante equivalente (forse più facile?)

Un solo passo: scandendo il numero da destra a sinistra, flip di ogni bit a partire dal primo 1 escluso

Esempi (su 5 bit):

-16+8+2 = **-6** 4+2 = **+6**

8+2+1=+11

-16+4+1 = **-11**

16

UNIVERSITÀ DEGLI STUDI DI MILANO

N - 1

Rappresentare un numero negativo in CP2

Rappresentare il numero -35 in complemento a 2 su 8 bit

Modo 1)

Metodo 1:

- Il numero è negativo, quindi il primo bit è 1, e vale $-2^7 = -128$
- Gli altri sette bit devono valere in tutto... $128 35 = 93 = 1011101_2$
- Risposta: 11011101₂

Metodo 2:

- Rappresento 35 in base 2: 0010 0011
- Calcolo l'opposto: 1101 1101

17

Decodificare un numero da CP2

Quale intero x è rappresentato in CP a 2 dalla sequenza binaria: 1100 1010 ?

$$1100\ 1010$$
Modo 1: $-2^7 + 2^6 + 2^3 + 2^1 = -128 + 64 + 8 + 2$

Modo 1: $-2^7 + 2^6 + 2^3 + 2^1 = -128 + 64 + 8 + 2 = -54$

Modo 1

Modo 2: Il numero è negativo (dato che comincia con 1).

Per trovare il suo valore assoluto, inverto il segno, ottenendo 0011 0110, che vale

$$2^5 + 2^4 + 2^2 + 2^1 = +32 + 16 + 4 + 2 = 54$$
0011 0110

Quindi, la risposta è -54

(nota: di caso in caso, un dei due modi può essere più veloce)

18

UNIVERSITÀ DEGLI STUDI DI MILANO

Operazione di addizione/sottrazione in C2

Valgono le seguenti proprietà:

1) La somma di 2 numeri x e y in complemento a due è uguale al complemento a due della somma

$$(x+y)_c = x_c + y_c$$

2) La operazione di sottrazione tra due numeri interi può essere effettuata come addizione

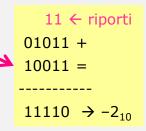
$$x_{c}-y_{c} = x_{c}+(-y)_{c}$$

Queste proprietà rendono più semplici i circuiti che realizzano le operazioni aritmetiche

UNIVERSITÀ DEGLI STUDI DI MILANO

19

Esempio


Calcolare: 11 - 13 con N=5

$$11 - 13 = 11 + (-13)$$

In complemento a 2:

$$+11_{10} \rightarrow 01011_{2}$$

 $-13_{10} \rightarrow 10011_{2}$

→ posso fare somma e differenza con lo stesso procedimento, quindi con lo stesso circuito!

Overflow nella addizione in C2

Si ricorda che l'addizione genera overflow quando la somma non ricade nell'intervallo di rappresentazione, e quindi non è rappresentabile.

Da tenere presente: non vale la stessa regola vista per i numeri interi senza segno. In particolare il bit di riporto dalla cifra più significativa non è rilevante

Regola pratica per determinare se si è verificato overflow:

- La somma fra un numero positivo e un numero negativo non genera overflow.
- L'eventuale riporto nella somma viene ignorato
- Si verifica invece overflow quando gli addendi sono entrambi positivi o negativi e il segno della somma **è diverso** da quello degli addendi

21

UNIVERSITÀ DEGLI STUDI DI MILANO

Esempio

N=4 Effettuare la somma +7-2 + 7-2
$$\rightarrow$$
 0111 + 1110 = +5

$$7 - 2 \rightarrow 0111 + 1110 = +5$$

$$0111_{2} + \frac{1110_{2}}{10101_{2}}$$

Poichè gli operandi sono di segno diverso, non si può verificare overflow. La cifra più significativa che risulta dal riporto viene ignorata. Il risultato è dunque: 0101

Nei linguaggi di programmazione ad alto livello: TIPI BASE L'esempio del go

Senza segno («unsigned»)								
Tipo base	Sinonimo	Bits	Bytes	Val min	Val max			
uint8	byte	8	1	0	255			
uint16		16	2	0	64 mila			
uint32	uint uintptr (disolito)	32	4	0	4 milioni			
uint64		64	8	0	16 miliardi			

Circa!

Qual è la cifra esatta, in base 16?

Con segno								
Tipo base	Sinonimo	Bits	Bytes	Val min	Val max			
int8		8	1	-128	+127			
int16		16	2	-32 mila	+32 mila			
int32	int (di solito)	32	4	-2 milioni	+2 milioni			
int64		64	8	-8 miliardi	+8 miliardi			

Circa! Qual è la cifra esatta, in base 16?

23

UNIVERSITÀ DEGLI STUDI DI MILANO

Esercizi di riepilogo

Rappresentare con numero di cifre N = 8 (un byte)

- I numeri: -14, -20, +31 in C2 e modulo e segno
- Intervallo di rappresentazione per rappresentazione in C2 e modulo e segno
- Elencare i numeri rappresentabili in C2 compresi nell'intervallo [-24, -20]
- il più grande numero in valore assoluto rappresentabile in complemento a 2 e in modulo e segno
- Determinare i numeri in C2 rappresentati dalla sequenza:

1111 1111

1010 1010

- Trovare due numeri in C2 che sommati generano un OVERFLOW
- Converti in C2 i valori 12 e -30, e, usando le due rappresentazioni, calcola la rappresentazione di 12-30

24

UNIVERSITÀ DEGLI STUDI DI MILANO