

Università degli Studi di Milano CdL in Informatica per la comunicazione digitale AA 2025/2026

Architettura degli elaboratori - Lez 5:

Porte logiche e circuiti combinatori

Marco Tarini marco.tarini@unimi.it

1

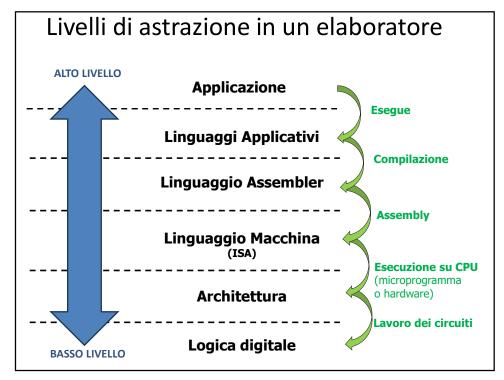
Segnali e informazioni

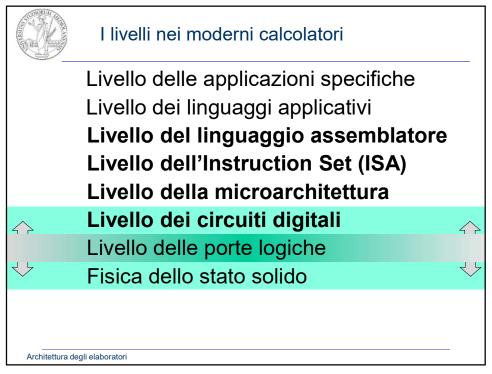
- Per elaborare informazioni, occorre rappresentarle (o codificarle)
- Per rappresentare (o codificare) le informazioni si usano segnali
- I segnali devono essere elaborati, nei modi opportuni, tramite dispositivi di elaborazione.
- Questi dispositivi sono il soggetto di questa parte del corso

Architettura degli elaboratori

- 3 -

Porte logiche





Il segnale binario e circuiti digitali

- Segnale binario: una grandezza che può assumere due valori distinti, convenzionalmente indicati con 0 e 1
 - ▶ $s \in \{0, 1\}$
 - Come abbiamo visto, qualsiasi informazione è rappresentabile (o codificabile) tramite un insieme o una sequenza di segnali binari (per esempio i caratteri del codice ASCII)

Ciruciti digitali

- L'elaborazione di segnali (o informazioni) binarie è oggi svolta principalmente tramite tecnologie microelettroniche (e in parte anche ottiche)
- ▶ I circuiti microelettronici che elaborano segnali (o informazioni) binari si chiamano circuiti digitali (o circuiti numerici, o circuiti logici)

Architettura degli elaboratori

- 6 -

Porte logiche

6

Il segnale binario

- Il segnale binario è adottato per convenienza tecnica
 - ▶ in linea di principio si potrebbe usare un segnale ternario o a *n*
- Implementazione fisica del segnale binario: si usano svariate grandezze fisiche come
 - corrente elettrica
 - luminosità
 - ▶ tensione elettrica ← la più usata! cioè potenziale elettrico; si misura in Volt tipicamente: tensione alta = segnale logico 1 tensione bassa = segnale logico 0 (nota: passa comunque una corrente!)
 - altre grandezze fisiche ancora (suono, etc)

Architettura degli elaboratori

- 7 -

Porte logiche

Porte logiche (logic gates)

 Minuscoli dispositivi sono dotati di alcuni cavi («wire») di ingresso, e uno di uscita

- Funzionamento:
 - 1. dai cavi di ingresso viene immesso un certo segnale binario (di input)...
 - ... e, dopo un certo tempo «di commutazione» (che è brevissimo: si parla di 10⁻¹⁰ sec...)
 - 2. dai cavi di uscita esce un certo altro segnale (elaborato, di *output*)
 - sia gli input e gli output sono codificati nello stesso modo fisico (esempio con una tensione)
 - ▶ finché il segnale di input resta invariato, neanche l'output cambia
 - quando il segnale di input cambia, (dopo il tempo di commutazione) il segnale di output cambia (se deve)

Architettura degli elaboratori

- 9 -

Porte logiche

9

Tipi di porte logiche

- Classificazione delle porte logiche: per numero di ingressi:
 - porte a 1 ingresso, (dette anche unarie)
 porte a 2 ingressi, (dette anche binarie)
 - porte a 3 ingressi, (dette anche ternarie)
 - e così via ...

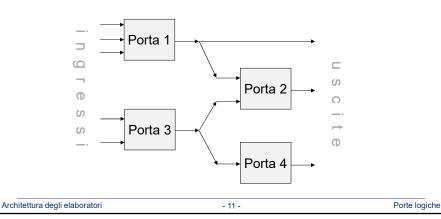
Architettura degli elaboratori

- 10 -

Porte logiche

Circuiti digitali (o reti digitali)

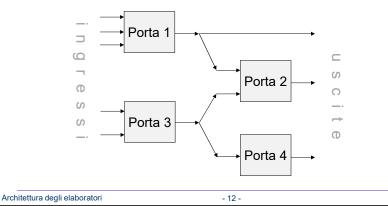
 Collegando gli output di una porta logica agli input di un'altra, e così via, costruiremo dei circuiti logici (circuiti digitali, o reti) che implementano funzioni a molti input e molti output ottenendo così elaborazioni via via più complesse



11

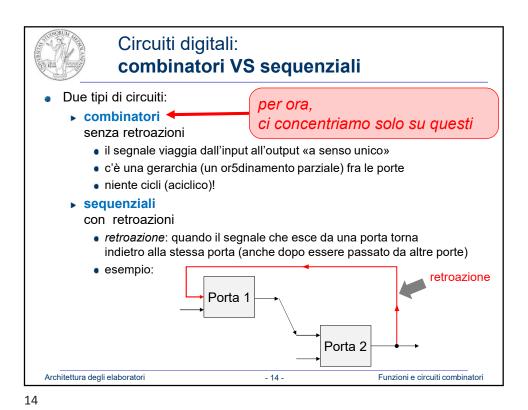
Circuiti digitali (o reti digitali)

- Un circuito digitale:
 - ▶ è dotato di n ≥ 1 ingressi e di un'uscita
 - è formato da porte logiche interconnesse da cavi
 - l'uscita di una porta è connessa con entrata in una porta o con l'output del circuito



12

Porte logiche



Vari tipi di porte logiche e loro comportamento

- Useremo porte logiche di vario tipo
 - (porte «AND», porte «OR», porte «NOT»…)
- Per ogni tipo, stiamo per vedere:
 - un simbolo grafico con cui rappresentarla nei nostri schemi (seguendo in questo delle tradizioni ben consolidate)
 - come si comporta,
 cioè cosa produce in output per ogni possibile input
- Come descrivere il comportamento di una porta (a N ingressi)?
 Useremo una tabella, detta «tabella delle verità», che ha:
 - Una colonna per ciascuno degli N ingressi
 - Una riga per ogni possibile combinazione di ingressi (sono 2^N righe)
 - ▶ Una colonna con il valore assunto dell'uscita per quegli ingressi

Architettura degli elaboratori

- 15

Porte logiche

Quali tipi di porte logiche usare? Le porte logiche «classiche»

- Useremo (soprattutto) tre tipi di porte logiche: NOT, AND, OR
- Vantaggi di questa scelta:
 - Corrispondono a concetti logici molto intuitivi
 - ► E' un set con una lunghissima storia di uso nella logica (da Aristotele in poi!). Sono quindi gli operatori «classici»
 - ► Come vedremo, è possibile realizzare qualsiasi circuito usando solo porte di questi tre tipi
 - Sono solo tre tipi: usare pochi tipi di porta logica abbatte i costi
 - Ma, va detto, non è l'unico «set» di porte (né il più piccolo possibile) con questa proprietà: ne esistono di più piccoli ma ancora sufficienti, come: { NOT, OR} , {NOT, AND} , {NAND} , {NOR}
 - (vedremo queste porte in seguito)

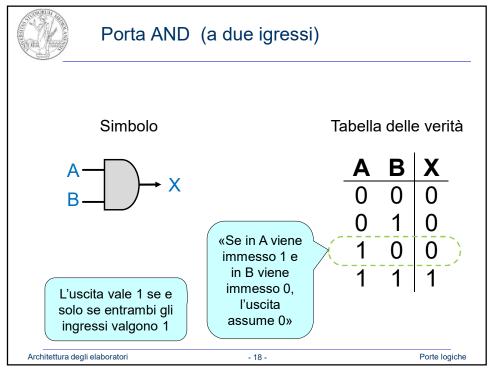
– molto usato in pratica

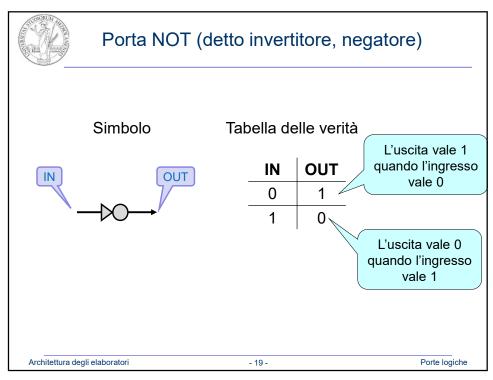
Architettura degli elaboratori

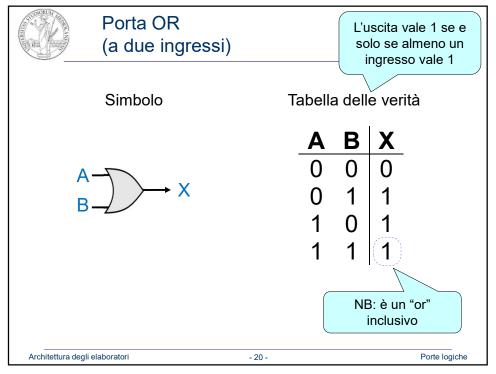
- 17 -

Porte logiche

17







Porte a più ingressi

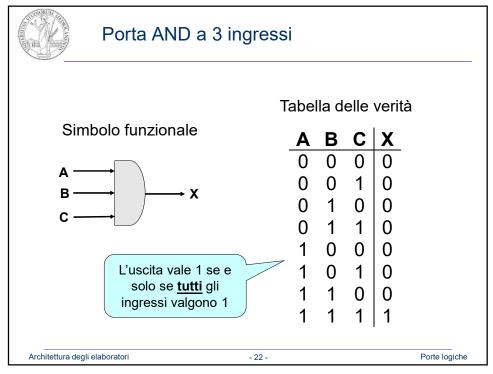
- Le porta AND e la porta OR (e altre) si possono generalizzare a 3, 4, ecc. Ingressi.
- Per es:
 - ▶ L'uscita X della porta AND a 3 ingressi vale 1 se e soltanto se tutti e tre gli ingressi A, B e C valgono 1
 - ▶ L'uscita X della porta OR a 3 ingressi vale 1 se e soltanto se almeno uno tra gli ingressi A, B e C vale 1
- Tipicamente si usano AND (o OR) a 2, 4 o 8 ingressi (raramente più di 8)

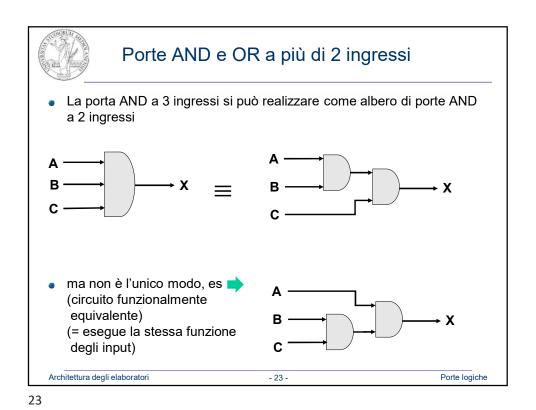
Architettura degli elaboratori

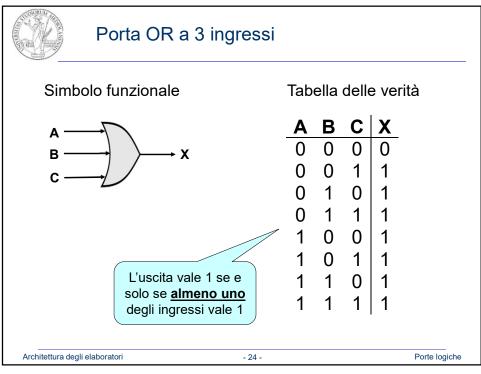
- 21 -

Porte logiche

21







Come si realizza una porta logica

- Questo tipo di domanda pertiene al livello dei dispositivi
 - esula da questo corso (noi partiamo dal livello logico)
 - (ci limitiamo qui ad alcune considerazioni di massima)

Livello logico

Livello della elettronica

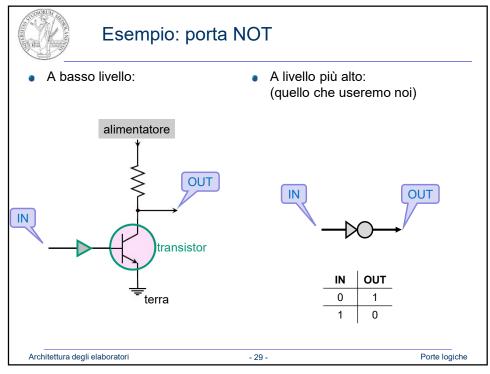
- Una porta logica è realizzata con un certo numero di transistor e diodi
- Il numero di questi componenti determina il costo della porta
- Dipende da: tecnologia utilizzata, funzione logica implementata, etc
- Come naturale, maggiore il numero di ingressi, maggiore il costo
 - Linea di massima: da 2 a 5 componenti per le nostre porte fino a 2 input

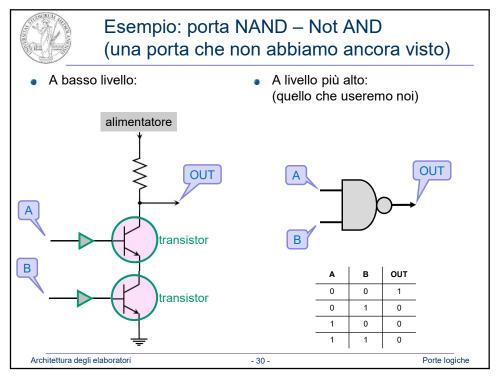
Architettura degli elaboratori

- 25 -

Porte logiche

25





Nota lessicale: «Algebra»

- In termini generali, un'algebra è una struttura matematica definita da:
 - Uno o più insiemi di valori possibili
 - Operazioni possibili che posso fare sugli elementi di questo insieme (che godono di alcune proprietà, eccetera)
- Un'espressione, in una data algebra, è una combinazione di operatori che operano
 - su **variabili** (simboli che possono assumere quasiasi valore) e **costanti** (valori predeterminati e fissi)
 - e parentesi per determinare l'ordine di esecuzioni degli operatori
- Per esempio, nella familiare algebra dei numeri reali, ho espressioni come

$$(5x + 12) \cdot y$$

Dove x e y sono le varabili, 5 e 12 le costanti, + e ⋅ gli operatori

Architettura degli elaboratori

- 36 -

Porte logiche

36

Algebra di Boole (o Booleana)

- Insieme = { 0, 1 } (cioè {Falso , Vero})
- Operatori = AND (prodotto logico), OR (somma logica), NOT (inversione logica)
- Una espressione booleana contiene una o più
 - variabili booleane,
 - operatori booleani prodotto (AND), somma (OR) e negaz (NOT):
 - ▶ Costanti (0 o 1)
- esempio: \A B + C

cioè: ((NOT A) AND B) OR C

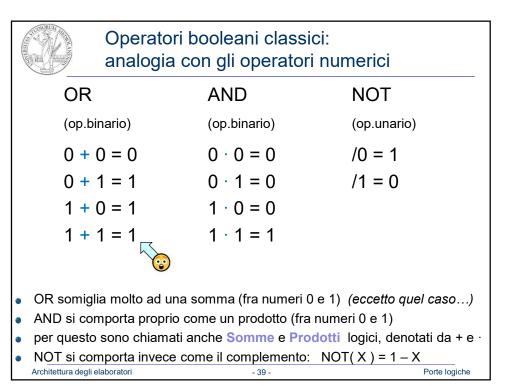
- Useremo le espressioni dell'algebra di Boole per descrivere matematicamente i circuiti combinatori
- Ogni espressione booleana (espressioni nell'algebra di Boole) corrisponde ad un circuito combinatorio, e viceversa!

Architettura degli elaboratori

- 37 -

Porte logiche

2 / / E	Operatori booleani classici: sintassi alternative comunemente usate				
OR	AND	NOT			
A + B	A × B	/ A			
A B	A && B	! A			
A B	A & B	~A			
A or B	A and B	not A			
A y B	ΑΛΒ	٦A			
	A · B	Ā			
	A * B				
dal latino «vel»	$AB \leftarrow nota!$				
Architettura degli elaboratori	- 38 -	Porte logiche			



Precedenza degli operatori nelle espressioni (analoghe a quelli numerici)

Il simbolo del prodotto logico si può omettere:

Cioè, se scrivo AB si intende A·B

Il prodotto «ha precedenza» sulla somma, e l'inversione «ha precedenza» su somma e prodotto

Cioè, se scrivo: A + /B C si intende A + ((/B) C) prima si esegue l'inversione di B, poi il suo prodotto con C, e infine la somma con A

E' possibile imporre un ordine diverso da quello determinato dalla precedenza degli operatori, usando le parentesi:

Per es, scrivendo: (A + /B) C si intende che prima avviene l'inversione di B, poi la somma con A, e infine il prodotto con C

Architettura degli elaboratori

- 41 -

Porte logiche

41

Precedenza degli operatori nelle espressioni (analoghe a quelli numerici)

Mini esercizi:

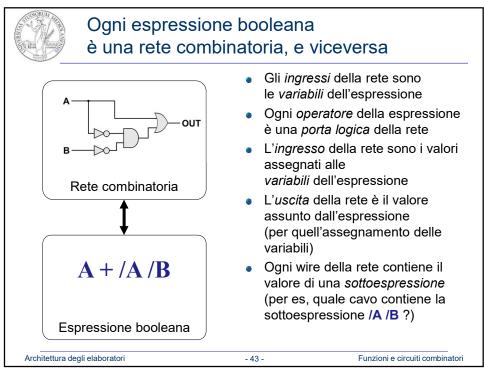
se A e B valgono entrambi 0 quanto valgono le espressioni /AB e /(AB)?

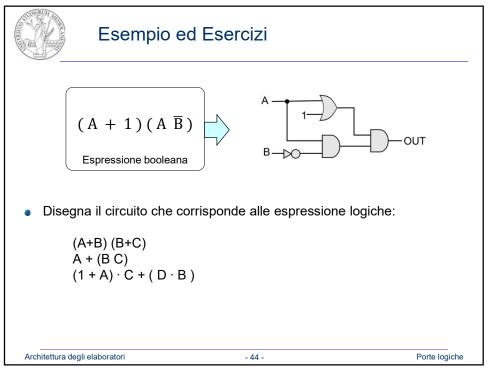
se A e B valgono entrambi 1 quanto valgono le espressioni /A+B e /(A+B)?

Architettura degli elaboratori

- 42 -

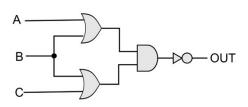
Porte logiche





Esercizi

Riporta le epressioni booleane corrispondenti ai circuiti:



Architettura degli elaboratori

- 45 -

Porte logiche

45

Nota lessicale: funzione logica o funzione booleana

- Come si sa, una funzione numerica è una funzione che, dato uno (o più) numeri, restituisce uno (o più) numeri
 - ▶ Per es, una funzione da naturali a naturali $f: \mathbb{N} \to \mathbb{N}$
 - ► Come la funzione «doppio», f(x) = 2x, dove per esempio f(4) = 8 e f(15) = 30
 - ▶ Una funzione può avere ha più di un argomento (è allora «multivariata») Come la funzione «somma», f(x,y) = x + y, dove f(4,6) = 10 che «va» da due naturali ad un naturale, quindi $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$
 - ▶ Una funzione anche può restituire più oggetti in uscita, Come la funzione «quoziente e resto» $f \colon \mathbb{N} \times \mathbb{N} \to \mathbb{N} \times \mathbb{N} \qquad \qquad \qquad Prodotto \ cartesiano, \\ \text{definita da } f(x,y) = (x/y,x \% y) \ . \qquad \qquad cioè insieme \ delle \ coppie \\ \text{per esempio, } f(44,6) = (7,2)$
- Una funzione logica (o booleana) è esattamente lo stesso concetto, ma lavora, sia in ingresso che in uscita, su valori «booleani» cioè l'insieme { 0 , 1 } o { falso , vero } , invece che su numeri

Architettura degli elaboratori

- 46 -

Porte logiche

Tabella (o tavola) di verità

- La tabella di verità è un modo per descrivere una funzione booleana
 - Nota che non sarebbe altrettanto facile usare questo metodo per le funzioni numeriche, perché ci sarebbero infiniti numeri da «tabellare»
- La tabella di verità di una funzione a N variabili è costituita da
 - N colonne degli ingressi,
 - la colonna di uscita (o più di una, se la funzione restituisce più valori)
 che riporta i valori assunti dalla funzione
 - 2^N righe, una delle per ciascuna delle possibili combinazioni di valori degli ingressi
- Nota: se due funzioni hanno la stessa tabella di verità, allora sono la *stessa* funzione!
 - ▶ Ogni tabella di verità corrisponde ad una funzione booleana
 - E viceversa
 - ► Tabella di verità è in pratica sinonimo di funzione booleana

Architettura degli elaboratori

- 47 -

Funzioni e circuiti combinatori

47

Ogni **espressione booleana** esprime una **funzione booleana**

- Attribuendo valori in {0,1} a ciascuna delle variabili booleane di un espressione, e calcolando il suo valore, si ottiene un valore risultante (0 oppure 1)
- Una data espressione booleana (ad N variabili) corrisponde una funzione booleana con un'uscita
 - cioè una funzione che va da: N booleani (gli argomenti della funzione)
 a: un booleano (il valore restituito della funzione)

Architettura degli elaboratori

- 48 -

Funzioni e circuiti combinatori

Trovare la funzione booleana di una espressione logica

- Esempio: espressione logica: (A + B) (C + \B)
- Tre variabili (A, B, C), quindi 2³ = 8 righe
- Passo 1: elenchiamo tutte le combinazioni di input possibili

Α	В	С
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1	1	0
1	1	1

Nota: è in pratica la lista dei numeri in binario a N cifre, elencati, in ordine, dal primo (0...0) all'ultimo (1...1)

Architettura degli elaboratori

- 49 -

Porte logiche

49

Trovare la funzione booleana di una espressione logica

- Esempio: espressione logica: (A + B) (C + \B)
- Passo 2: calcoliamo una a una tutte le sotto espressioni...

Α	В	С	A+B	\B	(C+\B)
0	0	0	0	1	1
0	0	1	0	1	1
0	1	0	1	0	0
0	1	1	1	0	1
1	0	0	1	1	1
1	0	1	1	1	1
1	1	0	1	0	0
1	1	1	1	0	1

Architettura degli elaboratori

- 50 -

Porte logiche

Troviare la funzione booleana di una espressoine logica

- Esempio: espressione logica: (A + B) (C + \B)
- Passo 3: fino a quella finale...

Α	В	С	(A+B)	\B	(C+\B)	(A+B) (C+\B)
0	0	0	0	1	1	0
0	0	1	0	1	1	0
0	1	0	1	0	0	0
0	1	1	1	0	1	1
1	0	0	1	1	1	1
1	0	1	1	1	1	1
1	1	0	1	0	0	0
1	1	1	1	0	1	1

Architettura degli elaboratori

- 51 -

Porte logiche

51

Trovare la funzione booleana di una espressione logica

 La funzione booleana calcolata dall'espressione logica (A + B) (C + \B) è dunque:

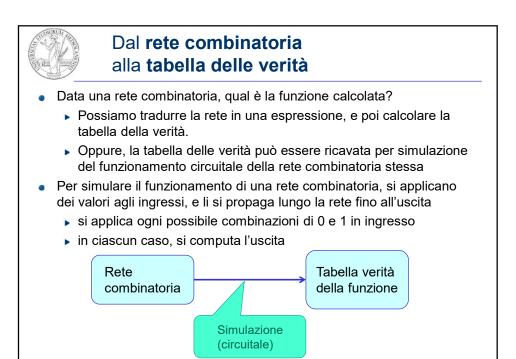
Α	В	С	OUT
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

- E' l'unica espressione logica ad avere questa tabella di verità?
- (e dunque questa funzione booleana)?
- Certamente NO!
- Espressioni booleane diverse possono avere la stessa funzione logica!
- Si dicono allora «espressioni equivalenti»

Architettura degli elaboratori

- 52 -

Porte logiche

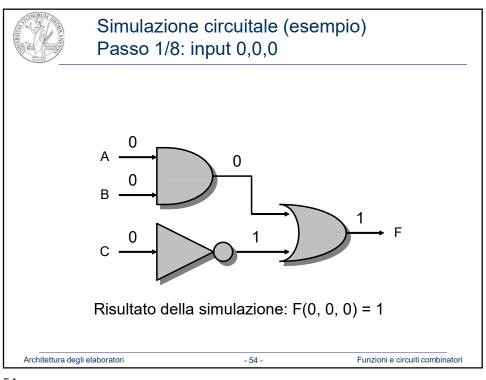


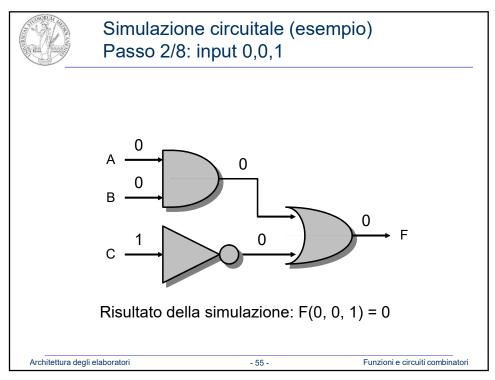
- 53 -

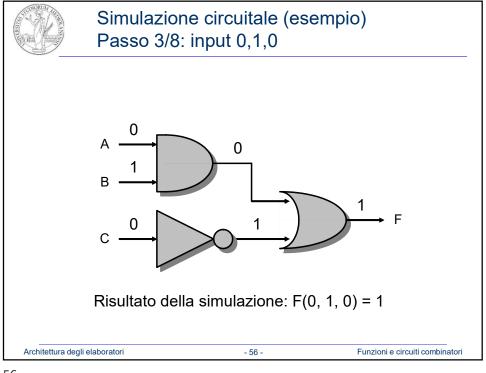
Funzioni e circuiti combinatori

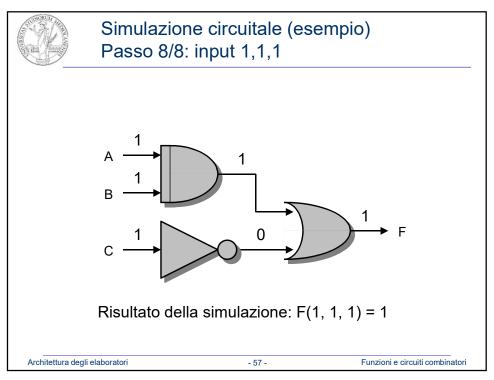
53

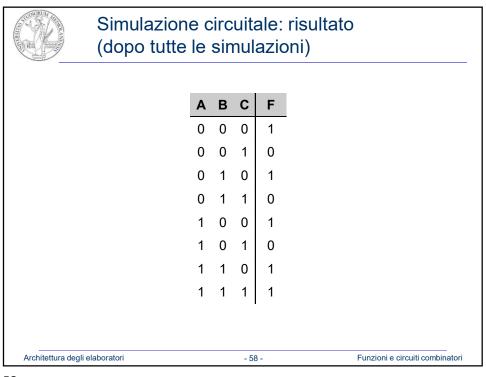
Architettura degli elaboratori











Reti combinatorie, espressioni booleane, e funzioni booleane

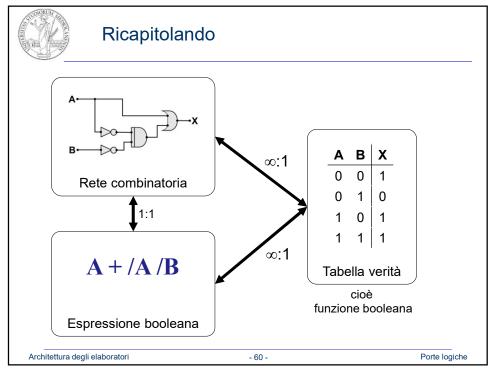
- Ogni espressione booleana corrisponde ad un circuito combinatorio
- E viceversa
- Ogni espressione booleana calcola una funzione booleana
- Ogni circuito combinatorio implementa una funzione booleana
- Una stessa funzione booleana può essere calcolata da infiniti circuiti combinatori diversi (equivalenti), corrispondenti ad altrettante espressioni booleane (equivalenti)
- Questi circuiti, pur equivalenti fra loro (stesso comportamento in termini di input e output) possono avere numero di porte, costi, velocità, consumi, molto diversi!
- Idea per ottimizzare un circuito:
 usando l'algebra delle espressioni booleane,
 riscriviamo un'espressione booleana in una equivalente
 ma che corrisponde (si spera) ad un circuito di costo minore
- Vediamo dunque alcune regole per riscrivere una espressione in una equivalente

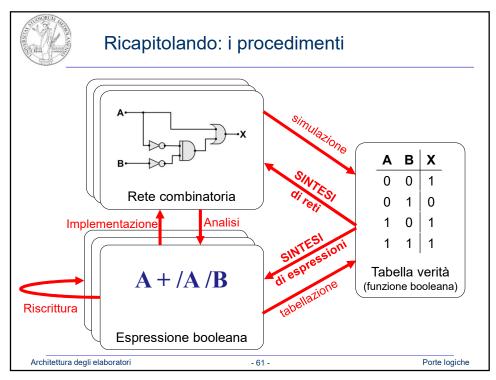
Architettura degli elaboratori

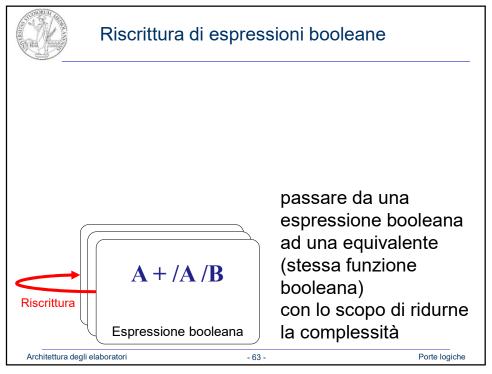
- 59 -

Funzioni e circuiti combinatori

59







Regole di trasformazione delle espressioni booleane

Legge	con AND	con OR (duale)	
Identità	1·A = A	0 + A = A	
Elemento nullo	0·A = 0	1 + A = 1	
Idempotenza	$A \cdot A = A$	A + A = A	
Inverso	A · /A = 0	A + /A = 1	
Commutativa	$A \cdot B = B \cdot A$	A + B = B + A	
Associativa	$(A \cdot B) \cdot C = A \cdot (B \cdot C)$	(A + B) + C = A + (B + C)	
Distributiva	$A + B \cdot C = (A + B) \cdot (A + C)$	$A \cdot (B + C) = A \cdot B + A \cdot C$	
Assorbimento	A·(A + B) = A	A + A·B = A	
De Morgan	/(A·B) = /A + /B	/(A + B) = /A · /B	
Tertium non datur	/ / A = A		
Architettura degli elaborato	ori - 64 -	Porte logiche	

64

Regole di trasformazione: note

- Le regole di trasformazione (o «di riscrittura»)
 ci consentono di passare da una espressione ad un'altra, equivalente.
 - ▶ lobiettivo delle riscritture: ottimizzare l'espressione di partenza
 - ▶ cioè: rendere il circuito associato più economico, o più veloce, etc
- Gli A, B nelle regole rappresentano sotto-espressioni qualsiasi
 - ▶ non necessariamente variabili. es: Idempotenza: (A(B+C) + A(B+C)) = A(B+C)
- Le regole sono a coppie (una per l'AND una per l'OR)
 - una è la regola DUALE dell'altra (principio di dualità)
 - cioè una è ottenuta dall'altra scambiando fra di loro:
 AND <==> OR & 0 <==> 1
- Ciascuna regola si può usare in un verso, o nel verso opposto
 - ➤ XXX = YYY → posso passare da XXX a YYY... oppure viceversa
- Solo alcune delle regole sono equivalenti a quelle familiari dell'algebra numerica (per esempio, la commutatività, o una delle due distributive)

Architettura degli elaboratori

- 65 -

orte logiche

De Morgan explained

Nel primale:

$$/(A B) = /A + /B$$

- negare che «sia A che B sono entrambi veri» significa
 affermare che o uno o l'altro (o entrambi) sia falso
- Nel duale:

$$/(A + B) = /A /B$$

 negare che «o vale A o vale B (o entrambi)» significa affermare che siano entrambi falsi

Architettura degli elaboratori

- 66 -

Porte logiche

66

Ulteriori esercizi

1. Costruisci la tabella di verità per l'espressione

AB + ABC

- 2. Determinare se l'espressione al punto 1 sia o no equivalente all'espressione
 AB+C (compara le due tabelle di verità!)
- Dimostra, usando la tabella di verità, la validità della seguente identità (cioè l'equivalenza delle due espressioni):

 $\(ABC) = \A+\B+\C$

4. Vero o falso: queste sono riscritture valide dell'equivalenza al punto 3

$$\overline{A \cdot B \cdot C} = \overline{A} + \overline{B} + \overline{C}$$

$$\sim (A \land B \land C) = \sim A \lor \sim B \lor \sim C$$

NOT(
$$A \text{ AND } B \text{ AND } C$$
) = (NOT A) OR (NOT B) OR (NOT C)
! (A && B && C) == (!A || !B || !C)

(l'ultima è nel linguaggio di programmazione C)

- 5. Prova (a fantasia) a definire espressioni, con due variabili A e B, che valgano sempre 0, o sempre 1, con qualsiasi valore assegnato ad A o B
- 6. Prova a semplificare questa espressione booleana, usando le regole viste:

$$A + \overline{A}B + \overline{A}\overline{B} + A + \overline{B}$$

Architettura degli elaboratori

- 67 -

Porte logiche