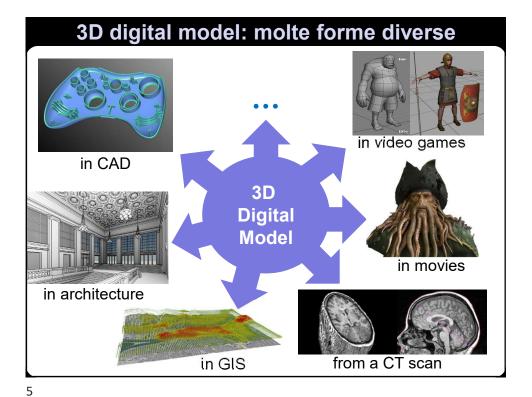


Una rappresentazione matematica di un oggetto 3D

3

Modelli digitali 3D: fonti e utilizzi

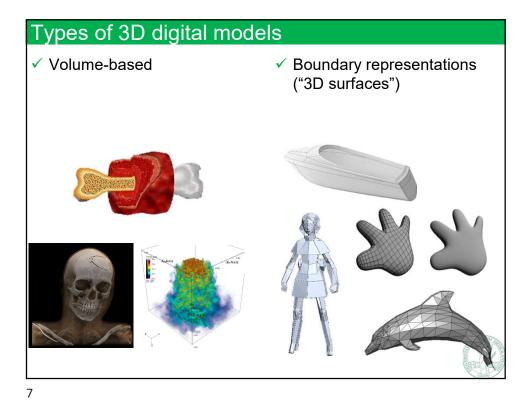

✓ Origini:

- ⇒ Da simulazione (es: a partire da un modello di maremoto...)
- ⇒ Cattura: detta: acquisizione 3D cioè attraverso misurazioni reali (es: una scansione laser) (es: una TAC)
- ⇒ Modellazione manuale da parte di artisti digitali (es: digital scupting, direct low-poly modelling) (con strumenti software appositi)

✓ Usi:

- ⇒ Producono nuova informazione sul modello astratto che gli ha generate
- ⇒ Realizzazione fisica, come fabbricazione (es 3D printing o alter forme di rapid protyping) o industria manufatturiera (in grande scala)
- ⇒Rendering, offline (es. film) o real time (es giochi, VR o altri usi interattivi)

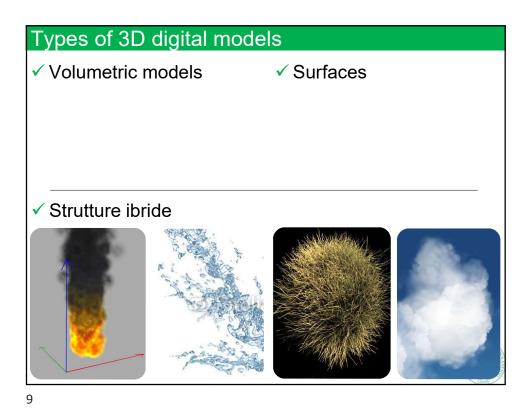
4


Modelli digitali 3D: molti approcci diversi

- ✓ Esistono molti dipi diversi di modello 3D digitale
 - ⇒ Diverse risposte alla domanda: «come codifico un oggetto 3D in un computer?»
- Approcci differenti in
 - ⇒ Cosa viene rappresentato (una superficie? Un volume?)
 - ⇒ Strutture dati usata
 - ⇒ utilizzabilità (sono animabili? Sono stampabili? Sono editabili? ...)
- ✓ Modelli di una stessa tipologia differiscono per
 - ⇒ caratteristiche (come la risoluzione, la qualità)
 - ⇒ origine
 - ⇒ qualità
- ✓ Esistono molte tecniche (di geometry processing) per passare da un tipo all'altro
 - ⇒ Quale modello è necessario ottenere Dipende sempre dall'applicazione Intesa!

3

6


Volume VS boundary representations

- Rappresentazioni volumetriche
 - ⇒ Modellano l'oggetto come un volume
 - ⇒ Rappresentato sia l'interno, che il bordo, che (a volte) anche l'esterno dell'oggetto
 - ⇒ Esempio: l'output di una TAC
- ✓ Rappresentazioni superficiali (o boundary representations)
 - ⇒ Modellano solo il bordo (il confine, «la buccia», il boundary) dell'oggetto 3D – cioè la superficie che lo delimita
 - ⇒ In generale sono meno onerose (occupano meno memoria)
 - ⇒ Sono più comunemente usate (per es, nei videogames)
 - ⇒ Motivazione: degli oggetti solidi (a meno che non siano trasparenti o traslucidi), si vede solo il bordo. Quindi, il rendering richiede solo questo.

4

8

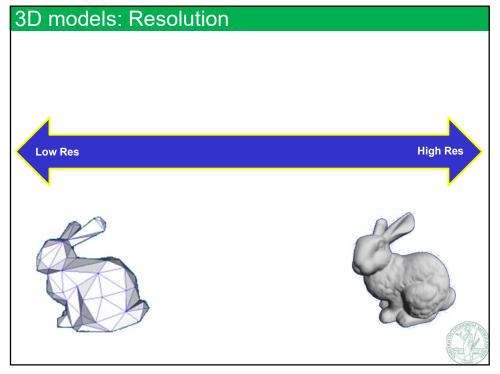
10

"Materiale"

- ✓ Il materiale (inglese: material) nel contesto della Computer Graphics
 - ⇒Una struttura dati che modella il modo in cui la sostanza di cui è fatta una superficie reagisce alla luce
- ✓ Risponde quindi a domande del tipo:
 - ⇒"Di che colore è?"
- Ma anche le altre caratteristiche ottiche:
 - ⇒E' lucido o opaco?
 - ⇒ Che tipo di riflessi manifesta?
 - ⇒E' (semi)trasparente?
 - ⇒E' traslucido?
 - ⇒E' cangiante? («cambia di colore al variare dell'incidenza della luce)

12

"Materiale"


- Questi fattori, negli oggetti reali, dipendono da:
 - ⇒ Proprietà elettriche (esempio: è dielttrico? È conducente?)
 - ⇒ Micro-struttura 3D (esempio: una superficie metallica coperta di micrograffi, avrà un "materiale" differente da una superficie metallica levigata) (esempio: una superficie di raso o velluto è caratterizzata da una fitta rete di microtuboli)
 - ⇒ Presenza di layer superficiali (esempio: la pelle umana è un «materiale» le cui caratteristiche dipendono dall'insieme dei vari stati epidermici sovrapposti) (esempio: in una superficie bagnata è rivestita da un sottile strato di liquido)
- ✓ Un «materiale» in CG solitamente non rappresenta espicitamente nessuna queste proprietà, ma modella il loro effetto congiunto nell'interazione della superficie con la luce

THE PARTY OF THE P

6

13

15

3D models: caratteristiche

- ✓ Low res model: real time applications
- High res models: offline applications

16

3D models: Risoluzione (in generale)

- ✓ Tutti i tipi di modello 3D hanno un concetto di risoluzione (detta anche : complessità)
 - ⇒bassa risoluzione => basso costo (in termini di RAM per storage, tempo di rendering...)
 - ⇒alta risoluzione => altà qualità (in termini di quantità di dettaglio modellato, aderenza del modello all'originale, fotorealismo...)
- ✓ La risoluzione di un modello 3D deve essere adeguata al contesto applicativo
- ✓ Per ogni categoria di modello 3D, il concetto «risoluzione» si declina in maniera diversa
 - ⇒Ad esempio: nel dato «immagini raster» risoluzione = numero di pixel (per unità di superficie)

17

3D models: Resolution

Alcune strutture dati per modelli 3D sono **MULTI-risoluzione**

- comprendono livelli diversi di risoluzione per lo stesso modello
- ✓ lo stesso oggetto è modellato da un modello a risoluzione diversa in momenti diversi
- ✓ scopo: consentire di utilizzare di volta in volta la risoluzione più adatta alle mutevoli situazioni
- ✓ varianti:
 - ⇒ variazione **discreta** della risoluzione o «livelli di dettaglio discreti»: si memorizza una piccola collezione di modelli 3D, ciascuno ad una risoluzione diversa, per es «alta» «media» «bassa»)
 - ⇒ variazione **continua** risoluzione, quando è possibile estrarre dinamicamente da un'unica struttura dati un modello ad una risoluzione richiesta che varia liberamente (in un range fra massima e minima)

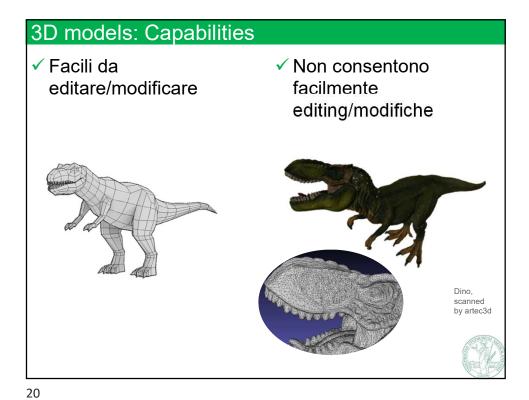
18

3D models: Adaptive Resolution

Alcune strutture dati per modelli 3D ammettono:

Risoluzione adattiva

- ✓ Risoluzione diversa in parte diverse dell'oggetto
- ✓ Il modello presenta una risoluzione differente in zone diverse (contemporaneamente)
- ✓ per es, in modo che dipende dalla loro importanza semantica, o dalla quantità di dettaglio geometrico locale


Contrario: fixed resolution

- Ad esempio, un'immagine raster non ha risoluzione adattiva: se sono 100 DPI in alto a sinistra, sono 100DPI in tutta l'immagine
 - ⇒DPI = dot per inches (pixel per pollice quadrato) (una misura di risoluzione per immagini raster)

9

19

3D models: Capabilities

- ✓ Editabilità
 - ⇒Alcuni tipo di modelli 3D si prestano ad un grado molto maggiore di altri ad essere modificati in modo semplice ed intuitivo da operatori umani (3D modellers)
 - ⇒I modelli 3D usati nel CAD e nel design, ad esempio, devono avere questa caratteristica

21

3D models: Capabilities

- √ "Simulation grade"
 - ⇒Adatti ad essere il soggetto di una simulazione
 - ⇒come: FEM, collision detection
- ✓ Oppure no
 - ⇒a causa di vari difetti
 - ⇒Come per es: rumore, incompletezza, inconsistenze (per esempio, in dati volumentrici, elementi con volume negative)

23

3D models: Capabilities

- ✓ Statici
 - ⇒3D
 - ⇒ (in questo corso ci occupiamo solo di questa categoria)

- ✓ Animati
 - ⇒3D + Tempo
 - ⇒Il modello include animazioni, movimenti, deformazioni

26

3D models: Capabilities

✓ Stampabili?

⇒ Non tutti i modelli 3D si prestano ad essere usati come input per una stampante 3D o altre tecniche di *rapid prototyping*

 \Rightarrow Ad esempio, i modelli superficiali devono essere «chiusi» per essere

stampabili, cioè devono delimitare uno spazio interno da un esterno (e questo non è necessariamente il caso)

27

Una (imperfetta) categorizzazione dei tipi di modelli digitali 3D					
		ELEMENTI DISCRETI			
		regolari «a griglia»	semi-regolari o irregolari		CONTINUI
			elementi simpliciali	elementi non simpliciali	
SUPERFICIALI	2-manifold	Height Field	Triangle Mesh	Polygonal Mesh	Subdivision surfaces
	«rappresenta una vera superficie»	Range Scan		Quad Mesh Quad dominant Mesh	Parametric Surfaces
		Geometry Images			(es. B- splines)
	non-manifold				
	«non rappresenta una sup»	Set di Range Scan	Point Cloud		
VOLUM ETRICI	(3-manifold)	Voxelized Volume Volumetric Textures	Tetra Mesh	Hexa Mesh	Implicit models (es. CSG)

30