

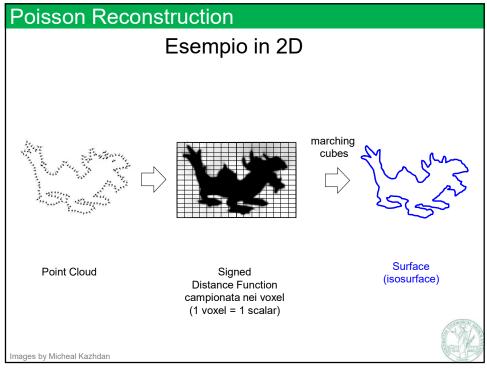
Da Nuvola di punti a Triangle Mesh passando per					
		ELEMENTI DISCRETI			CONTINUI
		regolari «a griglia»	semi-regolari o irregolari		
			elementi simpliciali	elementi non simpliciali	
SUPERFICIALI	2-manifold	Height Field		Polygonal Mesh	Subdivision surface
	«rappresenta una vera superficie»	Range Scan (Geometry Images)	Triangle Mesh	Quad-Mesh Quad dominant Mesh	Parametric Surface (es. B- splines)
	non-manifold «non rappresenta una sup»	Set di Range	Point Cloud		
VOLUM ETRICI	(3-manifold)	Voxels Solid Textures	Tetra Mesh	Hexa Mesh	Implicit model (es. CSG)

Da nuvola di punti a mesh

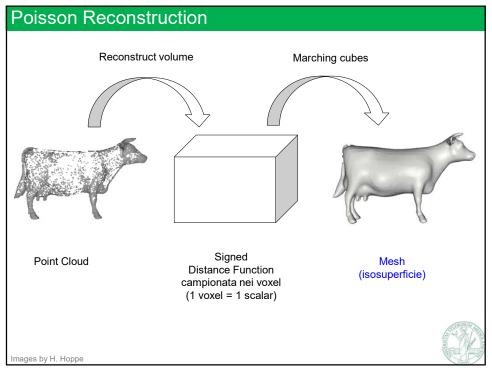
- ✓ Modi per convertire una nuvola di punti in una mesh
 - ⇒ Modo diretto: algoritmi di Front Advancing (come Ball Pivoting)
 - si aggiunge una connettività di triangoli per connettere i punti della nuvola (potenzialmente, scardandone alcuni)
 - -- il modo che abbiamo visto fin'ora
 - ⇒ Modo indiretto:
 - si converte la nuvola di punti in un dataset volumetrico di voxel

(che campiona nel volume una stima della Signed Distance Function - SDF)

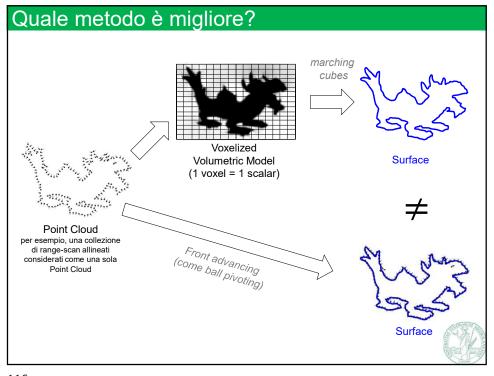
e si estrare da questo dataset una mesh poligonale (con algoritmo Marching Cubes con soglia 0)



112


Strutture volumetriche come dataset intermedio

- Poisson reconstruction
 - ⇒ Un modo comune di convertire una point cloud in una mesh che consiste nel è passare attraverso a un struttura volumetrica a voxel
- ✓ Idea:
 - ⇒ 1. Stendere una griglia volumetrica (o «lattice») nel volume coinvolto
 - ⇒ 2. Memorizzare una «signed distance function» nel volume (1 valore scalare per voxel, che memorizza una stima della distanza dalla superficie, negativo se il punto è dentro la superficie)
 - ⇒ 3. estrarre iso-superficie (attraverso marching cubes)
- ✓ Nel passo 2: ogni punto della nuvola di posizione p e normale n «vuole» che...
 - \Rightarrow ... il valore della funzione in p sia 0
 - $\Rightarrow \dots$ il gradiente della funzione in quella posizione sia allineato a n
 - ⇒ Si tratta quindi di computare un volume di voxel che rappresenti una SDF



114

115

Da nuvola di punti a mesh

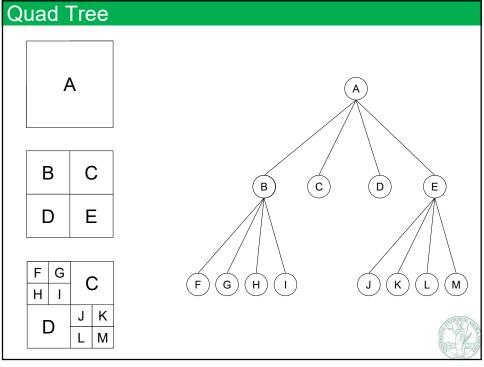
- ✓ Nei metodi diretti (ball pivoting, etc) si mantengono i punti della point cloud inalterati, come vertici della mesh
- questo è un problema quando la point cloud presenta difetti come:
 - ⇒ rumore o outliers
 - ⇒ difetti di allineamento (se la nuvola di punti è ottenuta allineando e unendo due nuvole separate, come spesso è il caso)
 - ⇒ densità diverse non volute, accidentali (per es, due point-cloud parziali sovrapposte presentano molti più campioni nelle parti ripetute)
 - ⇒ parti mancanti
- ✓ Sono tutti difetti comuni nelle point-cloud generate da acqusizioni 3D

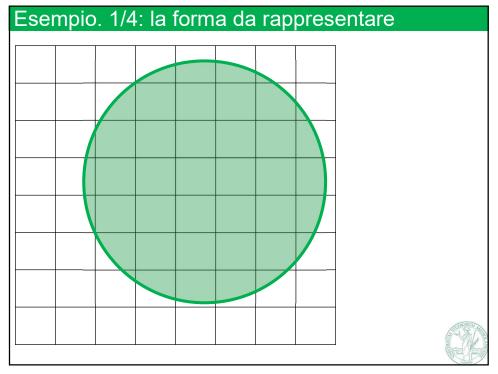
Da nuvola di punti a mesh

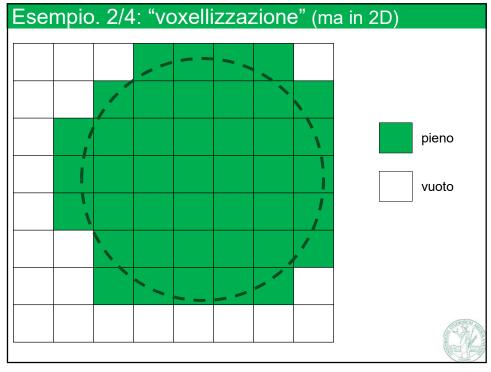
- ✓ Con la Poisson Reconstruction...
 - ⇒ vengono prodotti nuovi vertici che in sostanza mediano le posizioni dei punti nella nuvola di input, abbattendo rumore e difetti in modo naturale;
 - ⇒ viene sempre prodotta una mesh two-manifold, chiusa, e ben orientata

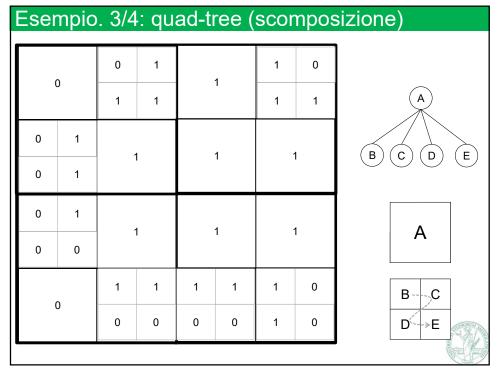
✓ Ma…

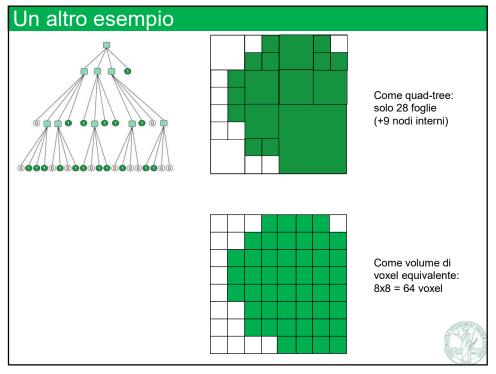
- ⇒ la mesh prodotta è molto irregolare; (anche se i punti di input fossero molto ben distribuiti)
- ⇒ anche se la nuvola di punti fosse stata a risoluzione adattiva, la mesh prodotta non la è più;
- ⇒ i vertici vengono ricampionati: è un difetto, se i punti originali sono molto accurati;
- ⇒ è molto oneroso in termini di computazione e soprattutto memoria, a meno che non venga scelta una risoluzione molto bassa – curse of dimensionality della rappresentazione voxel in azione
- ⇒ vediamo ora un modo generale per rimediare a questo problema (per qualsiasi struttura basata su voxel, non solo per questo uso)

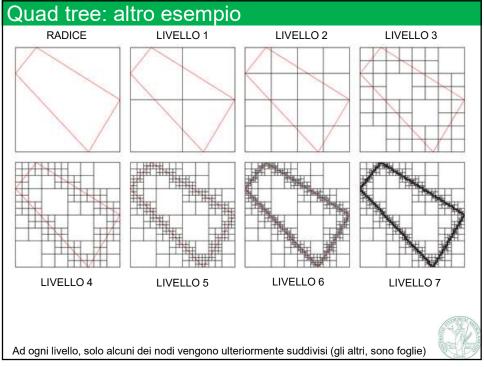



118


Dataset volumetrici a griglia adattivi

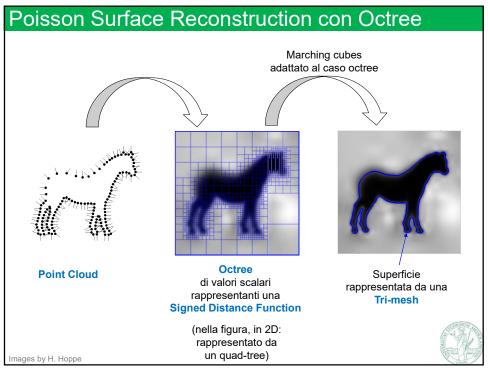

- ✓ Il problema della «curse of dimensionality» è dovuto all'uso di risoluzione di un dataset di voxel non è adattiva
- Esistono strutture dati più compatte, perchè dotate di risoluzione adattiva
- ✓ Una delle più diffuse è l'oct-tree
 - ⇒Vediamo prima una sua versione 2D: il quad-tree
 - ⇒In questi primi esempi, ipotizziamo di voler rappresentare in forma di quad-tree un dataset "voxelizzato" (ma in 2D) con 1 bit per voxel (1 = pieno , 0 = vuoto)







130


131

Octree: sommario

- ✓ Struttura ricorsiva, ad albero
- ✓ Un'alternativa molto più efficiente a dati di voxel
- ✓ Ogni nodo è associato ad un cubo nel volume
 - ⇒ Radice: nodo associato all'intero volume
 - ⇒ Ogni nodo non-foglia ha 8 figli, uno per ciascun ottavo del padre
 - ⇒ Ogni foglia: memorizza un voxel... di dimensione che dipende dal livello (ad esmpio, 1 bit – pieno o vuoto oppure un valore di signed distance field)
- ✓ Per memorizzare una struttura octree di profodità n come voxel sarebbero necessari $2^n \times 2^n \times 2^n$ voxels = 2^{3n}
 - \Rightarrow Un numero estremamente grande anche per n piccoli
 - \Rightarrow Per es, per $n = 10 \dots$ (soluzione: circa 1 miliardo)
- ✓ Invece, il numero totale di nodi memorizzati in un octree è usualmente molto minore
 - \Rightarrow tende ad essere quadratico (e non cubico!) con la risoluzione 2^n del modello rappresentato

132

