
Master Video Game Dev - UniVe
Marco Tarini

2019-06-28

Advanced Graphics programming:
Scene Graph 1

Master Videogames - Verona

the Scene Graph

Marco Tarini

Recap:
3D Spatial Trasforms

 Math functions
 input: point / vector / versor
 output: point / vector / versor

 Typically:
 Scaling + rotation + translation

 Modelling:
 scaling up or down / size

 isotropic (uniform) o anisotropic (deforming)

 orientation in space / rotation
 movement / position (traslation)

Thus, can be applied to e.g 3D
models (apply it to evey vertex
position and normal…)

1

3

Master Video Game Dev - UniVe
Marco Tarini

2019-06-28

Advanced Graphics programming:
Scene Graph 2

Recap: internal representations
of 3D Spatial Trasforms

 Many possible ones, but typically:
 translation (vec3) + scale (float or vec3)

+ rotation (3x3 matrix / quaternion / axis+angle / Euler angles)
 Regardless, we assume a transform is:

 Light in memory (few tens of bytes)
 Quick to apply (even to large, complex models)

 It’s done on-the-fly during rendering on the GPU
 Quick to:

 Interpolate with another (aka “blend” / “mix” / “lerp”)
 invert (find the opposite transform)
 cumulate (find A*B) («they are closed w.r.t. = composition»)

 Always interpretable as a change of Reference frame
 holds by def. for all the ones we care about: the “affine” ones

Recap: transformation associated to
an object in the scene

 From:
 local space a.k.a.
 object space a.k.a.
 pre-transform space
 a.k.a. «castle» space /

«hero» space /
«camera» space /
«chainsaw» space /
«bazooka» space etc

 Any object associated to a spatial location in the
game is given its transformation, which goes

 To:
 global space a.k.a.
 world space a.k.a.
 post-transform space

4

5

Master Video Game Dev - UniVe
Marco Tarini

2019-06-28

Advanced Graphics programming:
Scene Graph 3

Composite scenes:
hierarchical transformations

 So far, we assumed that the transform of each
object goes from local to global in one step

 In reality, scene is constructed hierarchically
 Objects are made of sub-objects
 a city is made of houses made of walls made of bricks
 a «hat» sits on an «head» which sits on a «character»

which sits in a «spaceship» moving across the «scene»

 Also: different instances of one object can appear
in multiple locations of the scene

Compositing scenes

world space

«wheel 1» space

«car» space

6

8

Master Video Game Dev - UniVe
Marco Tarini

2019-06-28

Advanced Graphics programming:
Scene Graph 4

Scene graph

A tree (i.e. hierarchical structrure)

 Each nodes: a space (a reference frame)
 To each node we associate:
 Instances to stuff…

(3D models, lights, cameras, virtual microphones
spawn points, explosions etc…)

 Root node: world space
 On the arches:
 the local trasforms

Scene graph

T0
T1

T2

T3 T4 T5 T6

Positioning
of the red car

(w.r.t. the world)

Positioning
of the 1st

wheel (w.r.t
the red car)

In this scene:
- 3 istances of the same

3D model of a vehicle
- 3x4 istances of a same

3D model of a wheel

9

10

Master Video Game Dev - UniVe
Marco Tarini

2019-06-28

Advanced Graphics programming:
Scene Graph 5

Local VS global Transform

 Local transform (a.k.a. «relative» tranform)
 from a node space to its parent space

 Global transform (a.k.a. «absolute» transform)
 from a node space to world space
 obtained by: cumulating local transforms!

 benefit: changing the transform associate to a
node affects its entire subtree!

World
Space

Scene graph

Space of
Car 1

space of
wheel 1

space of
wheel 2

space of
wheel 3

space of
wheel 4

T0
T1

T2

T3 T4 T5 T6

Space of
Car 3

Space of
Car 2

11

12

Master Video Game Dev - UniVe
Marco Tarini

2019-06-28

Advanced Graphics programming:
Scene Graph 6

Example

world

B

E F
G

T0 T1
T2

T3

T4
T5

T6

DC

H

L

T7

T0 ∘ T3 ∘ T7
global

transform
of L

local
transform
of G

The camera in
the scene graph

 Camera:
 just another element sitting somewhere the scene-graph
 for the scene to be rendered, there must be a camera

somewhere in the graph!
 the «camera space» (object-space of the camera obj)

is special
 aka View Space (Screen Space is similar)
 in CG, the View Transformation V

= inverse of Global Transform of camera node
= from World-space to View-space

 V is used in the rendering to determine where objects
end up on the screen.

 Camera animations = move camera = change V
 e.g. by script

15

16

Master Video Game Dev - UniVe
Marco Tarini

2019-06-28

Advanced Graphics programming:
Scene Graph 7

T0
T1

T2

T3
T4 T5 T6

The camera in
the scene graph

World
space

V

View space

= (T2 ∘ T8)-1

= (T8)-1 ∘ (T2)-1

camera

T8

Authoring a 3D scene
1/3

 Eg, as a sub-task of the Level Design
 The two task are different:
 3D modellers make «scene props»

 the 3D models to be combined

 (+ texutres etc)

 «sceners» compose the scene
 they assemble the props into a Scene Graph

(completed with a local trasform)

[DEMO]

17

18

Master Video Game Dev - UniVe
Marco Tarini

2019-06-28

Advanced Graphics programming:
Scene Graph 8

Authoring a 3D scene
2/3

 Additional assets:
 a Collision Mesh (a Geometry Proxy)

 for each scene-prop
 can this be made automatic? Possible, not easy
 needed for: physics, visibility computation, AI,

and all sorts of gameplay reasons…

 a Navigation Mesh (aka AI mesh)
 1 per the entire scene
 needed by: AI (routing)
 can this be made automatic? Possible, not tribial

Authoring a 3D scene
3/3

 Additional assets:

 Scripts ?
 task of the level designer

 Sky box

 Outer terrain mesh…

 Ambient sounds

 etc (data such as spawn points, etc)

19

20

Master Video Game Dev - UniVe
Marco Tarini

2019-06-28

Advanced Graphics programming:
Scene Graph 9

Scene Graph
as a data structure

 Each engine / library adopts its own solution
 No standards

 but file formats exits which can include a
scene graph: e.g. COLLADA

 Typical concepts:
 the Node class

keeps the (local) transform to the father node
(and / or childs, sibilings…)

 also, links (eg. pointers) to instances / assets
 global transforms are computed on demand
 camera node is a special node
 some mechanism is needed for repeated sub-trees

Example: a dining table

21

23

Master Video Game Dev - UniVe
Marco Tarini

2019-06-28

Advanced Graphics programming:
Scene Graph 10

World
(scene)

Pair
of Plates

GlassKnife Fork …

Chair
Dining

set

Table
furniture

Set
Table

Dining
room

Seat Seat …

Set
Table

Light
array L 6 walls

Light
array R

L0 L1 L2 …

Example: a dining table

24

25

Master Video Game Dev - UniVe
Marco Tarini

2019-06-28

Advanced Graphics programming:
Scene Graph 11

Nodes of a scene-graph in unity
GameObjects & Transforms

A node = a GameObject with
 a transform field, containing

 its local transform
 links to Parent, Children (and siblings) – which are transforms

 any number of associated “components”,
which represent anything residing in that node, like
 Meshes (to display at this nodes)
 Cameras: active one(s) produces the rendering(s)
 “RigidBodies”: objects controlled by the physics
 “Colliders”: geom proxies used for collisions
 “Particle systems” : (i.e. the “emitters” of particles)
 Sound producers / receivers
 Scripts …
 basically any asset!

Nodes of a scene-graph in unity
GameObjects & Transforms

 The Transformation actually stores the local transf:
 localPosition, localRotation, localScale
 remember: goes from this node to father node

 the Global transformation can be accessed
via the properties:
 position, rotation, scale

(“global” is left implicit)
 what does getting / setting them really do?

exercise!
 it doesn’t work for “scale”! why?

(because anisotropy)

feels like
assigning / reading a field,
actually means invoking
setters/getters (C# trick)

26

28

Master Video Game Dev - UniVe
Marco Tarini

2019-06-28

Advanced Graphics programming:
Scene Graph 12

Digression on Unity :
properties and components

 Properties (C# mechanism)
it feels like a field (you can read or assign it)
but it’s actually a getter and setter method
 obj.xx = 3 …means… obj.set_xx(3)

 foo = obj.xx …means… foo = obj.get_xx()

 Components (Unity library mechanism)
 A generic something attached to a GameObject
 GameObject g;
g.getComponent< type >()
returns component of required type
(if it exists)

base class
for everything

Nodes of a scene-graph in Unreal
USceneComponent

A node within a graph with:
 link to parent / children:
 getParentComponents
 getChildComponent(index)

 associated stuff to it:
UPrimitiveComponent (subclass)
 for models, physical bodies, etc

 Local Transform: (fields)
 RelativeLocation , RelativeRotation, RelativeScale

 Global Transform: (methods)
 GetComponentTransform() /* return transformation */

29

30

Master Video Game Dev - UniVe
Marco Tarini

2019-06-28

Advanced Graphics programming:
Scene Graph 13

Drawing for the exercises

world

B

E
F

G

T0 T1
T2

T3

T4

T5

T6

DC

H

L

T7

Exercises 1/2

 Give the global transform of node L
 I place a camera in node H:

report the View Transform for the scene
 What does it mean to apply a translation (1,0,0) to L …

1. in L Space (the local space of L)?
2. in World space?
3. in View Space?

 Say T7 is the identity, and the camera is in H:
how to modify T7 to get the 1,2,3 cases?

 Find the origin of space E in space H, and viceversa
 A microfone is in (the origin of) node E, and a speaker is in (the

origin of) node H. Find the distance from the mic to the speaker

31

32

Master Video Game Dev - UniVe
Marco Tarini

2019-06-28

Advanced Graphics programming:
Scene Graph 14

Exercises 2/2

What is the new transform T’7 which should subtitute T7 if…
 …node L il reattached as a child of D, leaving its position in world

space unaffected (e.g. by a scener, or a script)
 …node D is attached under node L, without affacting its world space

position.
 …the object in node L must be moved 1 unit on the right in view

space (camera is in node C)
 …the object in node L must be moved by by 1 unit ON ITS RIGHT

(assume T7 is currently the identity)
 …the object in node L must be displaced by a new transform T

applied in post-transform space.
Note: these kind of problems are silently solved by Unity all the times (in
the scripts & when user manipulates the the GUI)

Mechanism for
shared subtrees

 In Unity: “Prefabs” mechanism
 In Unreal: “BluePrints”

33

34

