
Master Video Game Dev - UniVe
Marco Tarini

2019-06-28

Advanced Graphics programming:
Animations 1

Types of animations in games

1. of rigid objects
 animate modelling transformations

(6 DoF per object)

Types of animations in games

1. of rigid objects
 or objects made of rigid sub-parts

3

4

Master Video Game Dev - UniVe
Marco Tarini

2019-06-28

Advanced Graphics programming:
Animations 2

Types of animations in games

2. Free-Form deformations
 generic transformations of the object

Types of animations in games

3. of articulated models
 internal skeleton

 most virtual characters!

 “skinning”

5

6

Master Video Game Dev - UniVe
Marco Tarini

2019-06-28

Advanced Graphics programming:
Animations 3

Types of animation
and DoF (per keyframe)

Rigid

Articulated

Free form

6 DoF per object
(or, e.g., 9, with anisotropic scaling)

~50-100 DoF per object
(e.g. 3 DoF per joint x 25 joints)

300-10.000 DoF per object
(e.g. 3 per-vertex)

DoF =
Degrees
of Freedom

Animations in games

 a

 a

 Assets!

 Control: easy.
full control by artists
(e.g. for dramatic fx)

 Realism: hard
it’s up to the artist skill

 Flexibility: little
Doesn’t adapt to env.

 (consumes RAM)

 a

 a

 Physic engine

 Control: hard

 Realism: easy
built-in physical laws

 Flexibility: great
Adapts to env / contexts

 (consumes GPU)

ProceduralNon procedural

7

8

Master Video Game Dev - UniVe
Marco Tarini

2019-06-28

Advanced Graphics programming:
Animations 4

Animations in games

 Or… a mix
 ex1: primary animations: scripted

secondary animations: computed

 ex2: alive characters: scripted
dead characters: computed (ragdolls)

 and more

 a frontier in CG and Interactive techniques!

Summary:
Types of scripted animations

 of objects made of rigid subparts
 including joints: robots, cars…
  “forward kinematics animations”

(dynamic changes of modelling transform)

 of deformable articulated objects
 with some internal skeleton
 e.g: most virtual characters:

humans / animals / monsters / anything in between
  “skinning” / “rigging”

 of generic deformable objects
 e.g. faces, an umbrella, stuff with membrane…
 “per-vertex animations” / “blend shapes” / “morph targets”

9

10

Master Video Game Dev - UniVe
Marco Tarini

2019-06-28

Advanced Graphics programming:
Animations 5

A digression on terminology

 The opposite of “procedural”,
depending on the context, can be…
 baked : ‘pre-cooked’, ‘frozen’ into an asset,

(when it was produced procedurally)
 asset : stored as an asset (irrespective of origin),

that is, read from the disk (or streamed from web)
 scripted : stored as a (simple!) script

(but, the procedure to create something can well be a script!
e.g. “this script procedurally generates a level”)

 (manually) designed / edited : made by an artist
(as opposed to: by a program)

 (fully) simulated : the output of a (complex!)
simulation

Animations in games
(of 3D Solid Objects)

ProceduralNon Procedural

Rigid

Articulated

Free form

Skeletal
Animations

Blend-Shapes

Rigid body
dynamics

Kinematic
Animations

(ASSETS) (PHYSIC ENGINE / ETC)

Ragdolling
Inverse

kinematics

(generic)
deformable object

simulation
usually

too expensive

Cloth/
garments

Ropes

11

12

Master Video Game Dev - UniVe
Marco Tarini

2019-06-28

Advanced Graphics programming:
Animations 6

(ASSETS) (PHYSIC ENGINE / ETC)

Animations in games
(of 3D Solid Objects)

ProceduralNon Procedural

Rigid

Articulated

Free form

Skeletal
Animations

Blend-Shapes

Rigid body
dynamics

Ragdolling
Inverse

kinematics

(generic)
deformable object

simulation
usually

too expensive

Cloth/
garments

Ropes

Kinematic
Animations

Scene graph

TR0
TR1

TR2

TR3 TR4 TR5 TR6

positioning
of the car

(in relation
to the world)

positioning
of the wheel
(in relation
to the car)

13

14

Master Video Game Dev - UniVe
Marco Tarini

2019-06-28

Advanced Graphics programming:
Animations 7

Animated Scene graph…
(“kinematic” animations)

TR0
TR1

TR3
TR4 TR5 TR6

positioning
of the car

(in relation
to the world)

positioning
of the wheel
(in relation
to the car)

Time: t0 t1 t2 t3 t4

Trasform: TR0 TR1 TR2 TR3 TR4

Kinematic animations:
how?

 way 1:
 just scripting

 way 2:
 editing in a animation software

 cinema 4D, blender, 3D max, …

 (including use of I.K. as part of the interface)

 export animation
 as a sequence of keyframes

 File formats: collada, fbx, …

asset:
the script

asset:
the animation

Time: t0 t1 t2 t3 t4

A==>B: TR0 TR1 TR2 TR3 TR4

B==>C: TR0 TR1 TR2 TR3 TR4

DEMO
!

15

16

Master Video Game Dev - UniVe
Marco Tarini

2019-06-28

Advanced Graphics programming:
Animations 8

Interpolating keyframes
(applies to all kinds of animations)

 Keyframes
+
interpolation

keyframe A keyframe B
0.5 ∙ keyframe A

+
0.5 ∙ keyframe B

Interpolating keyframes
(applies to all kinds of animations)

 The animator authors:
 a set of keyframes
 each with an associated time

 Status of the ani at any other frame:
interpolation between keyframes
 saves artist work
 saves storage

 note: keyframes distribution can be adaptive
 concentrate keyframes where needed / not linear

“timeline”

key-frames

17

18

Master Video Game Dev - UniVe
Marco Tarini

2019-06-28

Advanced Graphics programming:
Animations 9

Keyframe interpolation
(for kinematic animations)

time A = 100

time B = 200

time curr. = 150?
keyframe A

keyframe B

TA

TB

Ti = ?

interpolated

* Ti = mix(TA, TB, 0.5)

*

Animations in games
(of 3D Solid Objects)

ProceduralNon-Procedural

Rigid

Articulated

Free form

Skeletal
Animations

Blend-Shapes

Rigid body
dynamics

Kinematic
Animations

Ragdolling
Inverse

kinematics

(generic)
deformable object

simulation
usually

too expensive

Cloth/
garments

Ropes

(ASSETS) (PHYSIC ENGINE / ETC)

19

20

Master Video Game Dev - UniVe
Marco Tarini

2019-06-28

Advanced Graphics programming:
Animations 10

Asset for free-form animations:
Blend shapes

 A.K.A:
 Blend shapes

 Per-vertex animations

 Vertex animations

 Face morphs

 Shape keys

 Morph targets

 …
BARRY BLITT (THE NEW YORKER)

Blend shapes: concept

 Animation in 2D (old school):
a sequence of sprites

 Animation in 3D:
a sequence of meshes?

Walk cycle
(Monkey Island
LucasArt 1991)

21

22

Master Video Game Dev - UniVe
Marco Tarini

2019-06-28

Advanced Graphics programming:
Animations 11

Reminder:
representation of a mesh

 Indexed mode :
 Geometry: array of vertices position

 Attributes:
 stored at vertices

 Connectivity:
 Array of triangles (or polygons)

 Each triangle:
 a triplet of indexes to vertice

Blend shapes
(as a data structures)

connectivity (indexed)

Tri:
Wedge

1:
Wedge

2:
Wedge

3:

T1 V4 V1 V2

T2 V4 V2 V5

T3 V5 V2 V3

Vert: Pos

V1 (x,y,z)

V2 (x,y,z)

V3 (x,y,z)

V4 (x,y,z)

V5 (x,y,z)

geometry:

UV Col

(u,v) (r,g,b)

(u,v) (r,g,b)

(u,v) (r,g,b)

(u,v) (r,g,b)

(u,v) (r,g,b)

attributes:

V2

V3

V5

V4

V1

T1

T2
T3

23

24

Master Video Game Dev - UniVe
Marco Tarini

2019-06-28

Advanced Graphics programming:
Animations 12

Blend shapes
(as a data structures)

connectivity (indexed)

Tri:
Wedge

1:
Wedge

2:
Wedge

3:

T1 V4 V1 V2

T2 V4 V2 V5

T3 V5 V2 V3

Vert:
Base

Shape
Shape

1
Shape

2 …

V1 (x,y,z) (x,y,z) (x,y,z) …

V2 (x,y,z) (x,y,z) (x,y,z) …

V3 (x,y,z) (x,y,z) (x,y,z) …

V4 (x,y,z) (x,y,z) (x,y,z) …

V5 (x,y,z) (x,y,z) (x,y,z) …

geometries:

UV Col

(u,v) (r,g,b)

(u,v) (r,g,b)

(u,v) (r,g,b)

(u,v) (r,g,b)

(u,v) (r,g,b)

attributes:

V2

V3

V5

V4

V1

T1

T2
T3

V2

V3

V5

V4

V1

T1
T2 T3

V2 V3

V5

V4

V1

T1

T2

T3

Blend shapes

 A mesh with several associated geometries

 I.e. a sequence of meshes (‘shapes’) with
 shared connectivity
 shared attributies

 (except maybe normals / tangents)
 different geometries
 (and shared textures as well)

 Variants (they are equivalent):
 Relative mode:

 base shape: explicitly stored as points
 any other shape: as vectors: difference with base shape

 Absolute mode:
 each shape independently stored as points

or ‘morph’
or (key)-‘frame’
or ‘shape-key’

25

26

Master Video Game Dev - UniVe
Marco Tarini

2019-06-28

Advanced Graphics programming:
Animations 13

Blend shapes
(as a data structure, e.g. C++)

 Indexed mesh :

class Vertex {
vec3 pos;
rgb color;
vec3 normal;

};

class Face{
int vertexIndex[3];

};

class Mesh{
vector<Vertex> vert; /* geom + attr */
vector<Face> tris; /* connectivity */

};

Blend shapes
(as a data structure, e.g. C++)

 Indexed mesh :

class Vertex {
vec3 pos [N_SHAPES] ;
rgb color;
vec3 normal [N_SHAPES] ;

};

class Face{
int vertexIndex[3];

};

class Mesh{
vector<Vertex> vert; /* geom + attr */
vector<Face> tris; /* connectivity */

};

27

28

Master Video Game Dev - UniVe
Marco Tarini

2019-06-28

Advanced Graphics programming:
Animations 14

Blend-shapes:
most common file formats

 Simple:
 .MD5 (“quake”, valve)

 or, just a sequence of meshes (es .OBJ)
 making sure connectivity is coherent!

(vertex ordering = the same)

 Complex:
 .DAE (Collada)

 .FBX (Autodesk)

Interpolation between shapes

 Interpolating just the geometry:

 with assolute BlendShapes :
shapeA ȉ wA + shapeB ȉ wB

 with relative BlendShapes:
shapebase + delta_shapeA ȉ wA + delta_shapeB ȉ wB

 with: 0 ≤ wA ≤ 0
0 ≤ wB ≤ 1
wA + wB = 1

29

30

Master Video Game Dev - UniVe
Marco Tarini

2019-06-28

Advanced Graphics programming:
Animations 15

Uses of Blend-Shapes

shape A shape B

(shapes = facial expressions)

Uses of Blend shapes

 Temporal sequences
 shapes = keyframes

31

32

Master Video Game Dev - UniVe
Marco Tarini

2019-06-28

Advanced Graphics programming:
Animations 16

Use of Blend shapes

 Temporal sequences
 shapes = keyframes

Use of Blend shapes
as temporal sequences

 Shapes == keyframes of the animation

 shapeA with time tA

 shapeB with time tB

 shapeC with time tC

 shapeD with time tD

 current time: t with tB < t < tC

 interpolate betw. shapes: …

 weights : …
shapeB , shapeC

wB=
௧ି௧಴

௧ಳି௧಴
wC = 1 − wB =

௧ି௧ಳ

௧಴ି௧ಳ

33

34

Master Video Game Dev - UniVe
Marco Tarini

2019-06-28

Advanced Graphics programming:
Animations 17

Use of Blend shapes
as temporal sequences

 Shapes == keyframes of the animation

 shapeA with time tA

 shapeB with time tB

 shapeC with time tC

 shapeD with time tD

 current time: t with tB < t < tC

 interpolate betw. shapes: …

 weights : …
shapeB , shapeC

wB= 𝑓
௧ି௧಴

௧ಳି௧಴
wC = 𝑓

௧ି௧ಳ

௧಴ି௧ಳtransition function

Transition functions

 Not necessarily
the Linear one

1

1

𝑥

𝑓(𝑥)

linear

𝑓 𝑥 = 𝑥

(general concept,
applies to all animation types)

35

36

Master Video Game Dev - UniVe
Marco Tarini

2019-06-28

Advanced Graphics programming:
Animations 18

Transition functions

NB:  extrapolation !
( exaggeration)

(general concept,
applies to all animation types)

 Not necessarily
the Linear one

1

1

𝑥

𝑓(𝑥)

linear

𝑓 𝑥 = 𝑥

Uses of Blend shapes

 Facial animations
 (one of the commonest uses)

Here together with skeletal animations (see later)
(mandible, neck, eyeballs)

37

38

Master Video Game Dev - UniVe
Marco Tarini

2019-06-28

Advanced Graphics programming:
Animations 19

Usi delle Blend shapes

 Facial animations
 (one of the commonest uses)

Here together with skeletal animations (see later)
(mandible, neck, eyeballs)

Interpolation between more
than two shapes

 Blending the shapes:
 Absolute:

shapeA ȉ wA + shapeB ȉ wB+ shapeC ȉ wC + …

with:
0 ≤ wA,B,C, … ≤ 1

wA + wB + wC + … = 1

 Relative:
shapebase + shapeA ȉ wA + shapeB ȉ wB + shapeC ȉ wC + …

or maybe not (extrapolation).
Useful for…

39

40

Master Video Game Dev - UniVe
Marco Tarini

2019-06-28

Advanced Graphics programming:
Animations 20

41

42

Master Video Game Dev - UniVe
Marco Tarini

2019-06-28

Advanced Graphics programming:
Animations 21

Using facial animations as
Blend shapes: pipeline

 3D Modeller authors:
the set of blend-shapes

 Animator (of expressions) picks:
weights
 eg.: with sliders

 assisted / substituted by automatisms
 lip sync

 dynamically determined expressions

 Keyshape Blending: by rendering engine

[VIDEO]

43

44

Master Video Game Dev - UniVe
Marco Tarini

2019-06-28

Advanced Graphics programming:
Animations 22

Uses of Blend-Shapes

 Set of useful/typical physical configurations

 Baked poses

Uses of Blend-Shapes

 Variants of one give objects
 (mixable!)

masculine outfit feminine outfit

45

46

Master Video Game Dev - UniVe
Marco Tarini

2019-06-28

Advanced Graphics programming:
Animations 23

Uses of Blend-Shapes

 Variants of one give objects
 (mixable!)

huamn orc goblin dwarf

Uses of Blend-Shapes

 Defines shapes of a class of objects
 get a shape in the class = just choose the weights

 3D modelling at an high-level of abstraction
 the weights “span” one shape space

 one given shape = one point in the space
 weights = coords

 the space is the more useful the more:
 all and only the reasonable shapes

are represented in the space

 Typical Example: face morphologies
 “face-space”
 note: face morphology ≠ facial expression

47

48

Master Video Game Dev - UniVe
Marco Tarini

2019-06-28

Advanced Graphics programming:
Animations 24

Uses of Blend shapes
 A blend shape modelling a face space (“face-morphs”)

[DEMO]

What a blend shape
cannot do

 Change connectivity
 eg. change res, remeshing

 Change topology
 breaking apart, fusing parts

 Change attributes
 (eg color…)

 Change textures
 Use a texture animation instead, maybe?

49

50

Master Video Game Dev - UniVe
Marco Tarini

2019-06-28

Advanced Graphics programming:
Animations 25

Blend shapes:
authoring

Manual authoring:
1. Editing base shape

 including:
uv-mapping, texturing, etc.

2. Re-edit it
for each shape-key!
…while preserving:
connectivity,
textures, etc
 low poly editing

 or with subdivision surfaces…

 or with parametric surfaces…

 or with scupting.

Blend shapes:
authoring

 Handbook for
blend-shape based
face animation:
 “Stop Staring”

(3d edition)
Jason Osipa

 Covers: style,
expression…

 Non technical
(high level)

 Not about specific tools
e.g. Blender, Maya

51

52

Master Video Game Dev - UniVe
Marco Tarini

2019-06-28

Advanced Graphics programming:
Animations 26

Blend shapes:
hot to obtain them

 Capture:
 3D acquisition of base shape B0

 (including: simplification, remeshing, uv-mapping, etc)

 capture subsequent shapes B1, B2…
 e.g. real-time (kinect), o 3D scanning for each shape

 compute a morph B0 => B1
 “non rigid mesh alignment”

[VIDEO]

Blend shapes:
pro and con

  Flexible, expressive, huge number of DOF…
too much?

  RAM cost
 Work intensive

to construct

  Easy to use / efficient, once they are built
 just define global weights

(but, not as bad as old sprites,

because (1) sharing of
connectivity, textures, attributes
(2) keyframes / interpolation!

53

54

Master Video Game Dev - UniVe
Marco Tarini

2019-06-28

Advanced Graphics programming:
Animations 27

Blend shapes:
open challanges

 Capturing from a stream of meshes

 Compression
 eg: prediction + store corrections + Huffman

 Streaming

 LOD-ding

Animations in games
(of 3D Solid Objects)

ProceduralDesigned / scripted

Rigid

Articulated

Free form

Skeletal
Animations

Blend-Shapes

Rigid body
dynamics

Kinematic
animations

Ragdolling
Inverse

kinematics

(general)
deformable object

simulation
usually

too expensive

Cloth/
garments

Ropes

(ASSETS) (PHYSIC ENGINE / ETC)

55

56

Master Video Game Dev - UniVe
Marco Tarini

2019-06-28

Advanced Graphics programming:
Animations 28

Step by step…

Kinematic animations

(global)
world space

wheel _1
objects space

car1
object space

wheel_2
object space

car2
object space

t0

t1

Step by Step…

Kinematic animatios

T0
T1

T1,1 T1,2 T1,3 T1,4

positioning of
car 1

(w.r.t. the world)

positioning.
of wheel 1.1
(w.r.t. car1)

world
space

ca
r1

o
b

je
ct

sp
a

ce

w
h

e
e

l1
.1

o
b

je
ct

sp
a

ce

time

t0 T1 T1,1 T1,2 T1,3 T1,4 …

t1 T1 T1,1 T1,2 T1,3 T1,4 …

t2 T1 T1,1 T1,2 T1,3 T1,4 …

trasformation

Animation:

57

58

Master Video Game Dev - UniVe
Marco Tarini

2019-06-28

Advanced Graphics programming:
Animations 29

An animated
robot… T

T0

T1
T2

T4 T6

Robot
(pelvis)

world
space

spine1

left
thigh

right
thigh

right
shoulder

left
shoulder

right calf
spine2

T3

T7

right
foot

T8T5

neck

bones

“root” bone

Local tranformf
(“from foot to calf”)

Gobal transform
(“from foot to robot”) is:

T2xT7xT8

Step by step…

From a bunch of pieces…

 So far: one mesh in each “bone”
 (e.g., car-cockpit, car-wheel)

 Ok, for simple structure
 (like a car, a windmill…)

 What about a humanoid “robot” with 25-60
“bones”?
 Individual meshes for arms, forearms, legs…

three meshes for each finger?
 Possible, but…

 inefficient to render (many “draw calls”)
 uneasy to manage (lots of files?)
 a nightmare to design / author

(“sculpt me a nice looking calf”)
 and… looks right only for robots (each object rigid!)

59

60

Master Video Game Dev - UniVe
Marco Tarini

2019-06-28

Advanced Graphics programming:
Animations 30

… to articulated models…

 Idea: one mesh, but skinned
 1 mesh per the entire character
 a new attribute per vertex: index of bone
 the 3D model can now be animated!

 Orthogonality models / animations!
 that is:

 one skinned mesh: runs with any animations
 one skeletal animation: can be appliecable to any model

 (as long as they use the same RIG – set of bones)
 500 models + 500 animations = 1000 things in GPU RAM

 not: 500x500 combinations

 The tasks required from digital artists:
 “rigging”: define the skeleton inside the mesh (riggers)
 “skinning”: define vertex-to-bone links, i.e. the skinning (skinners)
 “animation”: define the actual animations(animators)

“Skinning”
of the mesh

(1st version).

Rig (or skeleton):
data structure 1/2

 A tree of bones
 bone:
 Vectorial frame (space) used to express

pieces of the animated model
 eg, for a humanoid: forearm, calf, pelvis, …
 (rigging bone != biological bones)

 Space of the root bone =(def)= object space
(of the entire character)

 How many bones in a skeleton of a humanoid:
at least: 22-24 (typically)
reasonable: ~40 bones.
very high: few 100s

61

62

Master Video Game Dev - UniVe
Marco Tarini

2019-06-28

Advanced Graphics programming:
Animations 31

Pose:
data structure

One trasformation
for each bone i
 Local transform: (of bone i)

 from: space of one i

 to: space of bone father of i

often, only the
rotation

component

(“fixed length bones”:
translations defined

once and for all
by the skeleton)

Rig (or skeleton):
data structure 2/2

1. Hierarchy (tree) of bones
 a root bone on top

2. A special pose «rest pose»
 3D models are to be

modelled in this pose

 also: «T-pose», «T-stance»,
 same resason why T-shirts are called T-shirts ;)

63

64

Master Video Game Dev - UniVe
Marco Tarini

2019-06-28

Advanced Graphics programming:
Animations 32

From Rest Pose
to a given pose

pelvis
(root)

spine 1

left
shoulder

right
shoulder

R2

R4 R6

right
leg

left
leg

right
calf

spine 2

R3 R7

right
foot

neck

R5 R8

R3R1

pelvis
(root)

spine 1

left
shoulder

right
shoulder

P2

P4 P6

right
leg

left
leg

right
calf

spine 2

P3 P7

right
foot

neck

P5 P8

P3P1

pose Xrest pose

From Rest Pose
to a given pose

pelvis
(root)

spine 1

left
shoulder

right
shoulder

R2

R4 R6

right
leg

left
leg

right
calf

spine 2

R3 R7

right
foot

neck

R5 R8

R3R1

pelvis
(root)

spine 1

left
shoulder

right
shoulder

P2

P4 P6

right
leg

left
leg

right
calf

spine 2

P3 P7

right
foot

neck

P5 P8

P3P1

final trans for foot, from rest pose to pose X = P2 P7 P8 (R2 R7 R8)-1 = P2 P7 P8 (R8)-1(R7)-1 (R2)-1

pose Xrest pose

same assame assame as

65

66

Master Video Game Dev - UniVe
Marco Tarini

2019-06-28

Advanced Graphics programming:
Animations 33

Bone transforms in a pose.
E.g. for «right foot» bone:

 Local Transform: P8

 from «right foot» to «right lower leg»

 Global Transform: P2 P7 P8

 from «right foot» to «character»
 uses the Hierarchy of the Skeleton

 once global t are computed, Hierarchy’s no longer needed!

 Final Transform: P2 P7 P8 R8-1 R7-1 R2-1

 from «character» in rest pose
to «character» in dest. pose

 uses the Rest Pose of the Skeleton (R1 … RN)
 once it’s computed, Rest Pose no longer needed either!

the object frame
of the character,
i.e. the frame of
the root bone

the space where mesh
vertices are defined!

Pose (for a given rig) :
data structure
 pose = array of (local) transforms

 it’s defined for one given rig

 RAM cost: n_bones x bytes_for_a_tranform

Osso i Trasform[i]

#0 (pelvis) [root] L[0]

#1 (spine) L[1]

#2 (chest) L[2]

#3 (shoulder sx) L[3]

… …

#10 (calf) L[10]

… …

Local Transform
It includes:

• a Rotation: always!

• a Translation: maybe
If not, use the one defined in
the rest pose of the rig.
==> a pose cannot
redefine bone lengths.

• a Scaling: maybe
If not ==> a pose cannot redef

the size of the body part.

68

69

Master Video Game Dev - UniVe
Marco Tarini

2019-06-28

Advanced Graphics programming:
Animations 34

Pose (for a given rig) :
data structure in GPU
 pose = array of final transforms

 it’s defined for one given rig

 RAM cost: n_bones x bytes_for_a_tranform

Osso i Trasform[i]

#0 (pelvis) [root] F[0]

#1 (spine) F[1]

#2 (chest) F[2]

#3 (shoulder sx) F[3]

… …

#10 (calf) F[10]

… …

computed in preprocessing e.g. as:
L[2] L[7] (R[7])-1 (R[2])-1

final
transforms

local transforms
of this pose

local transforms
of rest pose

Skeletal Animation :
data structure (CPU or GPU)

 1D Array of poses (the keyframes of the ani)

 RAM cost:
(num keyframes) x (num bones) x (transform size)

 Each pose assigned to time dt
 delta from start of animation t0

 Sometime, looped
 interpolation 1st keyframe with last

70

71

Master Video Game Dev - UniVe
Marco Tarini

2019-06-28

Advanced Graphics programming:
Animations 35

Step by step…

1. From a bunch of pieces…
 one separate mesh in each “bone”
 “calf” mesh, “head” mesh, “right-forearm” mesh…

… to articulated models…
 1 mesh for the entire character

 in each vertex, a link to a bone

… to articultated
defomable models.

 Idea: link each vertex to >1 bones
 Transform of the vertex:
 interpolation of the trasformations

associtated to the linked bones
 weights of the interpolation: defined per-verex

 Data structures: per-vertex attributes
 store:

 [bone index , weight] x Nmax

 (typically, Nmax = 4 or 2, see later)

the
“Skinning”
of the mesh

ver 2.0
(the real one)

72

73

Master Video Game Dev - UniVe
Marco Tarini

2019-06-28

Advanced Graphics programming:
Animations 36

Content creation Tasks:
Rigging & Skinning (of a 3D mesh)

Rigging – authoring of a rig
defining the skeleton
(often: also of the controls
to define poses for it)

Skinning – authoring of the skinning
“paint” of (weighted) links
between vertices and bones

(this story actually happened)

230 △
(1996)

300 △
(1998)

30.000 △
(2008)

48.000 △
(2012)

4.000 △
(2002)

74

75

Master Video Game Dev - UniVe
Marco Tarini

2019-06-28

Advanced Graphics programming:
Animations 37

(this story actually happened)

Tekken - 1994 Tekken 2 - 1995 Tekken 3 - 1997

Tekken 5 - 2004 Tekken 6 - 2007Tekken 4 - 2001

(this story actually happened)

Tekken - 1994 Tekken 2 - 1995 Tekken 3 - 1997

Tekken 5 - 2004 Tekken 6 - 2007Tekken 4 - 2001

76

77

Master Video Game Dev - UniVe
Marco Tarini

2019-06-28

Advanced Graphics programming:
Animations 38

Skinned Mesh:
data structure

 A Mesh with a skinning
 A per vertex attribute

 Stored per vertex:
 [bone indexd , weight] x Nmax times

 example:

Bone Index Weight

9 (Spine B) 0.4

13 (Chest) 0.1

15 (Shoulder Right) 0.4

16 (Forearm Right) 0.1

Vertex 120

N_max = How many bone links
for each vertex

 It’s a call of the Game engine!
 typical used value:
 1 (rigid pieces) (bonus: no need to store weights)
 2 (cheap, e.g. for mobile games)
 4 (top quality – standard)
 more: never in games (currently)

 Can one lower Nmax ?
 yes, in preprocessing

(e.g. task for a un game tool)
 e.g.: Unity does this during skinned mesh import

(if asked)

79

80

Master Video Game Dev - UniVe
Marco Tarini

2019-06-28

Advanced Graphics programming:
Animations 39

(but why put an hard-bound
on bone links?)

 Reduces performance cost
 Nmax tranforms need be interpolated in GPU

 in vertex shader

 GPU = no good at control:
 always uses exactly Nmax trasf
 unused bones: weight = 0

 Reduces GPU RAM cost
 not only fewer data to store, but:
 fixed leght arrays: the only way in GPU

 Nmax (index,weight) pairs
 even where fewer are locally needed

(e.g. 1 bone, weight automatically 1)

Bone Index Weight

9 (Head) 1.0

-- 0.0

-- 0.0

-- 0.0

es:

Skinning - how it works (in GPU)

model
in rest pose

a vertex
(in rest pose)

෍𝑤𝑖 = 1

Transform:

𝑇0

𝑇1

𝑇2

𝑇3

Bone: Weight:

bone a 𝑤0

bone b 𝑤1

bone c 𝑤2

bone d 𝑤3

dest.
pose

x
ve

rt
ex

 s
ki

nn
in

g

blend

81

82

Master Video Game Dev - UniVe
Marco Tarini

2019-06-28

Advanced Graphics programming:
Animations 40

Skinning - how it works (in GPU)

deformed
model

vertex
(in dest pose)

ᇱ

ᇱ

model
in rest pose

dest.
pose

a vertex
(in rest pose)

GPU real time Skinning –
two variants

Transform:

𝑇0

𝑇1

𝑇2

𝑇3

Bone: Weight:

bone a 𝑤0

bone b 𝑤1

bone c 𝑤2

bone d 𝑤3

blend

How this is done?
 linear interpolation of matrices:

“Linear Blend Skinning”
(old school, still very much used)

 quaternion based interpolation:
“Dual Quaternion Skinning”
(more complex, fewer artifacts)

(a choice of the rendering engine)

83

84

Master Video Game Dev - UniVe
Marco Tarini

2019-06-28

Advanced Graphics programming:
Animations 41

Real time “Skinning”
task of the rendering engine,

done in GPU

+ =

skinned
model
(asset in

GPU RAM)

skeletal
animation

(asset in
GPU RAM)

animated
model

Orthogonality
animation / models

RIG
(skeleton) Animation

Walk
Animation

Jump
Animation

Die

Model
A

Model
B

Model
C

86

87

Master Video Game Dev - UniVe
Marco Tarini

2019-06-28

Advanced Graphics programming:
Animations 42

Intro: skinning

Intro: skinning

88

89

Master Video Game Dev - UniVe
Marco Tarini

2019-06-28

Advanced Graphics programming:
Animations 43

(recap) Skeletal animations:
3 Assets (data strcutures)

 Rig (or skeleton)
 Tree di bones (ossa)
 Ɐ bone => reference frame (in rest pose)

 (reference frame root bone = objects space)

 Skinned 3D Model
 Mesh with links: vertices => bones
 Ɐ vertex: attributes: [bone index , weights] x Nmax

 Skeletal animations
 Sequence of keyframe poses
 Ɐ pose, Ɐ bone = a local transform

example of file formats (for all three):
 .SMD (Valve), .FBX (Autodesk), .BVH (Biovision)

Animation
GPU

Object

UPLOAD

Life of Animation Assets
in a Game Engine

DISK CENTRAL RAM GPU RAM

Animation
Object

Skeleton

Final
Transforms

Local
Transforms

IMPORT
Animation

File

IMPORTSkeleton

Rest pose

90

91

Master Video Game Dev - UniVe
Marco Tarini

2019-06-28

Advanced Graphics programming:
Animations 44

Mesh
GPU

Object

Mesh
File

Skeleton
File

Mesh
GPU

Object

(Once again,
Memory Management)

Mesh
Object

Mesh
GPU

Object

Mesh
Object

GPU
Object

Mesh
Object

Mesh
ObjectMesh

ObjectMesh
ObjectMesh

ObjectAnimation
Object

Animation
File

Animation
File

Animation
File

Animation
File

Animation
File

Animation
File

Animation
File

Animation
File

Animation
File

Animation
File

Animation
File

Animation
File

Animation
File

Animation
File

Animation
File

Animation
File

Animation
File

Animation
File

Animation
File

Animation
File

Skeleton
File

Animation
ObjectAnimation

Object

Mesh
File

Skeleton
FileSkeleton
Object

DISK CENTRAL RAM GPU RAM

Animation
GPU

Object

Content creation Tasks:
Rigging & Skinning (of a 3D mesh)

Rigging – authoring of a rig
defining the skeleton
(often: also of the controls
to define poses for it)

Skinning – authoring of the skinning
“paint” of (weighted) links
between vertices and bones

92

93

Master Video Game Dev - UniVe
Marco Tarini

2019-06-28

Advanced Graphics programming:
Animations 45

Content creation Tasks:
Rigging & Skinning (of a 3D mesh)

 Rigging :
 define a skeleton

(with a rest pose)
 inside one mesh,

(or a set of meshes: a shared rig)

 Skinning (of a mesh):
 painting link vertex-bones

 Animation (of a rig)
 authoring of (skeletal) animations
 (More about this later)

rigger

skinner

animator

D
ig

it
a

l m
o

d
e

ll
e

r
ta

sk
!

(h
e

lp
e

d
/

re
p

la
ce

d
b

y
a

u
to

m
a

tic
a

lg
o

ri
th

m
s)

D
it

ig
a

l
a

n
im

a
to

r
ta

sk

Skeletal animations:
authoring / obtaining them

 Manual editing
 digital animators
 help from:

IK (in animation interfaces),
physical simulations (for “secondary” animations)

 From physics simulation
 just use the right set of constraints!

(easy, in Verlet)
 in preprocessing (bake them) or

on the fly: “RAGDOLLING”

 Or…

94

95

Master Video Game Dev - UniVe
Marco Tarini

2019-06-28

Advanced Graphics programming:
Animations 46

Skeletal animations:
authoring / obtaining them

 Motion capture:

Interpolation poses

 any two poses can be interplated!

 just interplolate the per bone transform
 (note: requires recomputation of final transf

from local ones)

pose A pose B
0.5 ∙ pose A

+
0.5 ∙ pose B

96

97

Master Video Game Dev - UniVe
Marco Tarini

2019-06-28

Advanced Graphics programming:
Animations 47

Pose = keyframe

 Compress animations

keyframe A

0.75 A + 0.25 B

0.50 A + 0.50 B

0.25 A + 0.75 B

keyframe B

0.50 B + 0.50 C

keyframe C

animation
“run”

t = 0

t = 1

t = 2

t = 3

t = 4

t = 5

t = 6

stored pose

interpolated pose
(on the fly)

Interpolation of poses (at runtime):

transition between animations

 Eg: from stance to run

keyframe A

0.75 A + 0.25 B

0.50 A + 0.50 B

0.25 A + 0.75 B

keyframe B

0.67 B + 0.33 C

animation X
“stance”

t = 0

t = 1

t = 2

t = 3

t = 4

t = 5

0.33 B + 0.67 C

keyframe C

t = 6

t = 7

keyframe D

0.50 D + 0.50 E

0.75 E + 0.25 F

0.50 E + 0.50 F

t = 0+k

t = 1+k

t = 2+k

t = 3+k

t = 4+k

t = 5+k0.25 E + 0.75 F

keyframe F t = 6+k

t = 7+k

delay
k = 3

animation Y
“run”

keyframe E

98

99

Master Video Game Dev - UniVe
Marco Tarini

2019-06-28

Advanced Graphics programming:
Animations 48

0.80 X + 0.20 Y

0.60 X + 0.40 Y

0.40 X + 0.60 Y

0.20 X + 0.80 Y

0.25 A + 0.75 B

keyframe B

0.67 B + 0.33 C

0.33 B + 0.67 C

keyframe C

keyframe D

0.50 D + 0.50 E

0.75 E + 0.25 F

0.50 E + 0.50 F

keyframe E

Interpolation of poses (at runtime):

transition between animations

 Eg: from stance to run

keyframe A

0.75 A + 0.25 B

0.50 A + 0.50 B

animation X
“stance”

t = 0

t = 1

t = 2

t = 3

t = 4

t = 5

t = 6

t = 7 0.50 E + 0.50 F

t = 0+k

t = 1+k

t = 2+k

t = 3+k

t = 4+k

t = 5+k0.25 E + 0.75 F

keyframe F t = 6+k

t = 7+k

delay
k = 3

animation Y
“run”

0.25 A + 0.75 B

keyframe B

0.67 B + 0.33 C

0.33 B + 0.67 C

keyframe C

keyframe D

0.50 D + 0.50 E

0.75 E + 0.25 F

keyframe E

Applying poses:
Dual Quaternion Skinning

 A variant:
per-bone transforms are stored as
dual quaternion
 isometries only
 (arguably) better quality

 (better interpolation)

 > GPU cost
 (necessary ops: ~ +50%)

 LBS (Linear Blend Skinning) or DQS?
 a call of the game engine

100

101

Master Video Game Dev - UniVe
Marco Tarini

2019-06-28

Advanced Graphics programming:
Animations 49

Forward kinematic
VS inverse kinematic

 (in robotics)

Forward kinematics:
«from angles (and dists) to (x,y)»

VS

Inverse kinematics:
«from (x,y) (and dists) to angles»

Inverse Kinematic (IK):
an useful tool

 Forward kinematics:
 “given local transfer

P1, P2… PN,
(as angles)
where does the foot go?”

 (one solution, trivival)

 Inverse kinematics
 “if I need the foot to be in

pos p, how to set
P1, P2… PN, ?”
 (under constraints,

e.g. DoF at joints)

 (no one solution, not trivial)

pelvis
(root)

spine 1

right
shoulder

left
shoulder

P2

P4 P6

right
leg

left
leg

right
calf

spine 2

P3
P7

right
foot

neck

P5 P8

P3
P1

103

104

Master Video Game Dev - UniVe
Marco Tarini

2019-06-28

Advanced Graphics programming:
Animations 50

Inverse Kinematic (IK):
an useful tool

 Two uses:
 in preprocessing (helping the task of the animator)
 in real time (done by the game engine)

(e.g. in unity: API in scripts)

 Examples of real-time uses:
 Exact positioning of feet on ground
 Exact positioning of hand to object to be grabbed
 Hands need to be joined

(e.g. 2-handed weapon wielding)
 (e.g. making the system correct for small changes in bone

lengths)
 (e.g. during interpolated keyframes)

 etc.

Third person
view

view space

V

T1

= (T1 x T2)-1

= (T2)-1 x (T1)-1

camera

T2

world
space

105

106

Master Video Game Dev - UniVe
Marco Tarini

2019-06-28

Advanced Graphics programming:
Animations 51

First person
view

world
space

T1

torso 1

shoulder
R

shoulder
L

P3

P8 P10

leg
R

leg
L

calf
R

torso 2

P4
P7

foot
R

neck

P9
P11

P2
P1

head

hip
(root)

P12

view space

V

camera

T2 T2 = «mid-eye» positioning
(in «head» space)

busto 1

spalla dx spalla sx

P3

P8 P10

gamba
dx

gamba
sx

polpaccio
dx

busto 2

P4

P7

piede
Dx

collo

P9

P11

P2
P1

testa

bacino
(root)

P12

Compositing poses
( and animations)

+ =
lower

joints

upper
joints

busto 1

spalla dx spalla sx

P3

P8 P10

gamba
dx

gamba
sx

polpaccio
dx

busto 2

P4

P7

piede
Dx

collo

P9

P11

P2
P1

testa

bacino
(root)

P12

busto 1

spalla dx spalla sx

P3

P8 P10

gamba
dx

gamba
sx

polpaccio
dx

busto 2

P4

P7

piede
Dx

collo

P9

P11

P2
P1

testa

bacino
(root)

P12

Pose A Pose B New Pose

107

108

Master Video Game Dev - UniVe
Marco Tarini

2019-06-28

Advanced Graphics programming:
Animations 52

busto 1

spalla dx spalla sx

P3

P8 P10

gamba
dx

gamba
sx

polpaccio
dx

busto 2

P4

P7

piede
Dx

collo

P9

P11

P2
P1

testa

bacino
(root)

P12

Compositing poses
( and animations)

+ =
lower

joints

upper
joints

busto 1

spalla dx spalla sx

P3

P8 P10

gamba
dx

gamba
sx

polpaccio
dx

busto 2

P4

P7

piede
Dx

collo

P9

P11

P2
P1

testa

bacino
(root)

P12

busto 1

spalla dx spalla sx

P3

P8 P10

gamba
dx

gamba
sx

polpaccio
dx

busto 2

P4

P7

piede
Dx

collo

P9

P11

P2
P1

testa

bacino
(root)

P12

P1 = 0.45 ∙ + 0.55 ∙ P1 P1

also, interpolating, e.g.:

Pose A Pose B

Compositing poses
( and animations)

 Useful in different contexts:
 e.g. different character parts following different ani

(e.g. lower body: run. Upper body:
aims/shoots/reload)

 Note:
requires updating the final transformations
 (after changing the local ones)

 Implementation note (Unity):
 Unity does this with “Layers” in Animation

Controller
 Layer = a mask:

which bones are driven by this animation?

109

110

Master Video Game Dev - UniVe
Marco Tarini

2019-06-28

Advanced Graphics programming:
Animations 53

A few (pre)processing
tasks for skeletal animations

 Compression
 input: ani with N keyframes

 output: ani with M<N keyframes

 Retargeting
 input: Rig1 + (Skel animat for Rig1) + Rig2

 output: (Skel animat for Rig 2)

 Building from a blend-shape animation
 input: Blend-shape

 output: Rig + Skinned Mesh + Anim

 note: the opposite is a trivial («baking»)

Compression of skeletal
animations

 Objective: remove keyframes
 the “redundant” ones
 preprocessing task (e.g. as a game tool)

 Basic algorithm concept:
 for each keyframe Px

 tentatively remove Px

 compute interpolated version Pi
from remaining keyframes
 (the prev and next ones)

 if distance(Pi , Px) > MAX_ERR
then reinsert keyframe Px

111

112

Master Video Game Dev - UniVe
Marco Tarini

2019-06-28

Advanced Graphics programming:
Animations 54

Research topic: apply ML
to skeletal animations

 A very active area of research…

Phase-Functioned Neural Networks
for Character Control
Daniel Holden, Taku Komara, Jun Saito
SIGGRAPH 2017

Flexible Muscle-Based Locomotion
for Bipedal Creatures
Thomas Geijtenbeek, Michiel van de Panne,
A. Frank van der Stappen
SIGGRAPH 2013

(Among MANY others)

Research topic: better interfaces
to author animations

Tangible and Modular Input Device for
Character Articulation
Alec Jacobson, Daniele Panozzo, Oliver
Glauser, Cedric Pradalier, Otmar Hilliges, Olga
Sorkine-Hornung
SIGGRAPH 2014

113

114

Master Video Game Dev - UniVe
Marco Tarini

2019-06-28

Advanced Graphics programming:
Animations 55

Research topic: Deformation
beyond standard skinning

Efficient Elasticity for Character Skinning
with Contact and Collisions
Aleka McAdams et al (Disney animation)
SIGGRAPH 11

Note: usually way more complex than direct methods (LBS / DQS).
More offline animation oriented than videogames

Per-vertex animations
VS Skeletal-Animations

 Per Vertex animations
 can interpolate

keyframes
(but linear trajectories)

 heavy in RAM
 replications of

normals / positions

 light to render /
compute

 Skeletal animations
 can interpolate

keyframes better
(curved trajectories)

 light in RAM
 animations / models

orthogonality

 minor overheads
 transform interpolation

(x vert!)

 updates final transoform
before (unless can be
baked)

115

116

Master Video Game Dev - UniVe
Marco Tarini

2019-06-28

Advanced Graphics programming:
Animations 56

Animations in games
(of 3D Solid Objects)

ProceduralNon-Procedural

Rigid

Articulated

Free form

Skeletal
Animations

Blend-Shapes

Rigid body
dynamics

Kinematic
animations

(ASSETS) (e.g. PHYSIC ENGINE)

Ragdolling
Inverse

kinematics

(generic)
deformable object

simulation
usually

too expensive

Cloth/
garments

Ropes

Non-procedural Animations:
which one to pick?

 Which format to pick?

EXAMPLE:
say we want
a model capable of
doing this:

117

118

Master Video Game Dev - UniVe
Marco Tarini

2019-06-28

Advanced Graphics programming:
Animations 57

Non-procedural Animations:
which one to pick?

Transform
animation

“wing” mesh
(2 instances)

“hull”
mesh

“wing” mesh
(2 instances)

“windscreen”
mesh

wing
mesh

wind-
screen

mesh

wing
mesh

wing
mesh

wing
mesh

hull
mesh

TwsTw1

Tw2 Tw3
Tw4

Tshipanimate
these!

solution 1:

rest of scene

scene graph

Non-procedural Animations:
which one to pick?

Skeletal
animation

x-wing
skinned mesh

wing
bone

wind-
screen

bone

wing
bone

wing
bone

wing
bone

hull
bone

Tship

solution 2:

x-wing rig
skeletal animations

119

120

Master Video Game Dev - UniVe
Marco Tarini

2019-06-28

Advanced Graphics programming:
Animations 58

Non-procedural Animations:
which one to pick?

Blend-
shape

solution 3:

“x-wing” blend-shape

base shape morph 1 morph 2

Non-procedural Animations:
which one to pick?
In this example:
 Animation of transforms (of the scenegraph):

 how: 3 (rigid) meshes, 5 instances, animate scenegraph transforms
 can reuse geometry for all wings: most compact on RAM 
 simpler rendering
 5 separated draw calls! 

 Skeletal animation:
 how: one rig + one skinned mesh + few skeletal animations

 mesh skinning: single bone enough in this case
 if very low poly mesh (few polys): a waste?
 more taxing rendering (a bit) 

 real time skinning on vertex any
 single draw call! 

 Blend shapes:
 how: blend shape with one base shape + 2 morphs
 minimal impact
 worst quality interpolation: linear

 vertices on straight paths
(unless, more shapes added)

 heaviest on RAM 
 (a waste of DoF!)
 not important, if very low res

 single draw call! 
 but to different buffers each frame / or to a larger buffer

straight
(non curved)

paths

121

122

Master Video Game Dev - UniVe
Marco Tarini

2019-06-28

Advanced Graphics programming:
Animations 59

Animations in games
(of 3D Solid Objects)

ProceduralNon-Procedural

Rigid

Articulated

Free form

Skeletal
Animations

Blend-Shapes

Rigid body
dynamics

Kinematic
Animation

(ASSETS) (e.g. PHYSIC ENGINE)

Ragdolling
Inverse

kinematics

(generic)
deformable object

simulation
usually

too expensive

Cloth/
garments

Ropes

“G
e

om
. C

a
ches”

Geom. Caches
(for lack of a better name)

 Baked, optimized animations
 of a mixture of types e.g.

 blend shapes

 kinematic animatios
 (approximated)

 skinned animations
 (typically, no scene graph, just final transf)

 optimized
 compressed, streamed…

 Baking of a variety of simulations results

.abc

most used
file format:

by

123

124

Master Video Game Dev - UniVe
Marco Tarini

2019-06-28

Advanced Graphics programming:
Animations 60

Geom. Caches
(for lack of a better name)

 Baked, optimized animations
 of the appropriate types including mixtures

Geometry Caches
(a subset of Alembic)

by

as Pre-made Tansforms:
Meshes: 170
Data rate: 0.13 MB/s
Draw calls: 170
(same ones each frame)

Input:
170 Meshes
88400 Verts

as a Blend Shape:
Meshes: 1, with N shapes
Data rate: 4.3 MB/s
Draw calls: 1
(different one each frame)

as a Skeletal Animation
Meshes: 1, w skinning (*)
Data rate: 0.13 MB/s
Draw calls: 1
(same one each frame)
(*) just 1 bone per vertex

Animations
in Unity (+Mecanim) (notes)

 Assets (models, animation, skeletons) imported as formats:
 fbx, collada

 Animation compression
 available during import / builds
 auto reduction of: num of links per vertex, num of keyframes … :

 «Animator Controller» module deals with:
 blending between animations: «transitions»
 compositing animations: «layers»

 e.g.: a layer overwrites upper body bones
 and is nicely WYSIWYG (graph visualization)

 Inverse Kinematic: with scripts (Avatar.SetIKPoistion)

 Skeletons:
 way 1: custom (imported as assets)
 way 2: built-in standard humanoid skeleton provided

 (~21 ossa)
 simplified: rigging (predefined constrains), layers (predef. labelling)

125

126

